[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Beyond Adapting SAM: Towards End-to-End Ultrasound Image Segmentation via Auto Prompting

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15008))

  • 1562 Accesses

Abstract

End-to-end medical image segmentation is of great value for computer-aided diagnosis dominated by task-specific models, usually suffering from poor generalization. With recent breakthroughs brought by the segment anything model (SAM) for universal image segmentation, extensive efforts have been made to adapt SAM for medical imaging but still encounter two major issues: 1) severe performance degradation and limited generalization without proper adaptation, and 2) semi-automatic segmentation relying on accurate manual prompts for interaction. In this work, we propose SAMUS as a universal model tailored for ultrasound image segmentation and further enable it to work in an end-to-end manner denoted as AutoSAMUS. Specifically, in SAMUS, a parallel CNN branch is introduced to supplement local information through cross-branch attention, and a feature adapter and a position adapter are jointly used to adapt SAM from natural to ultrasound domains while reducing training complexity. AutoSAMUS is realized by introducing an auto prompt generator (APG) to replace the manual prompt encoder of SAMUS to automatically generate prompt embeddings. A comprehensive ultrasound dataset, comprising about 30k images and 69k masks and covering six object categories, is collected for verification. Extensive comparison experiments demonstrate the superiority of SAMUS and AutoSAMUS against the state-of-the-art task-specific and SAM-based foundation models. We believe the auto-prompted SAM-based model has the potential to become a new paradigm for end-to-end medical image segmentation and deserves more exploration. Code and data are available at https://github.com/xianlin7/SAMUS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, X., Song, L., Liu, S., Zhang, Y.: A review of deep-learning-based medical image segmentation methods. Sustainability 13(3), 1224 (2021)

    Article  Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  3. Huang, X., Deng, Z., Li, D., Yuan, X., Fu, Y.: MISSFormer: an effective transformer for 2D medical image segmentation. IEEE Trans. Med. Imag. 42(5), 1484–1494 (2022)

    Article  Google Scholar 

  4. Kirillov, A., et al.: Segment anything (2023). arXiv preprint arXiv:2304.02643

  5. Huang, Y., et al.: Segment anything model for medical images? Med. Image Anal. 92, 103061 (2024)

    Article  Google Scholar 

  6. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024)

    Article  Google Scholar 

  7. Zhang, K., Liu, D.: Customized segment anything model for medical image segmentation (2023). arXiv preprint arXiv:2304.13785

  8. Wu, J., et al.: Medical SAM adapter: Adapting segment anything model for medical image segmentation (2023). arXiv preprint arXiv:2304.12620

  9. Jie, L., Zhang, H.: AdapterShadow: Adapting segment anything model for shadow detection (2023). arXiv preprint arXiv:2311.08891

  10. Na, S., Guo, Y., Jiang, F., Ma, H., Huang, J.: Segment any cell: a SAM-based auto-prompting fine-tuning framework for nuclei segmentation (2024). arXiv preprint arXiv:2401.13220

  11. Zhang, X., Liu, Y., Lin, Y., Liao, Q., Li, Y.: UV-SAM: Adapting segment anything model for urban village identification (2024). arXiv preprint arXiv:2401.08083

  12. Biswas, R.: Polyp-SAM++: Can a text guided SAM perform better for polyp segmentation? (2023). arXiv preprint arXiv:2308.06623

  13. Paranjape, J.N., Nair, N.G., Sikder, S., Vedula, S.S., Patel, V.M.: AdaptiveSAM: Towards efficient tuning of SAM for surgical scene segmentation (2023). arXiv preprint arXiv:2308.03726

  14. Yue, W., et al.: Part to whole: Collaborative prompting for surgical instrument segmentation (2023). arXiv preprint arXiv:2312.14481

  15. Yue, W., Zhang, J., Hu, K., Xia, Y., Luo, J., Wang, Z.: SurgicalSAM: Efficient class promptable surgical instrument segmentation (2023). arXiv preprint arXiv:2308.08746

  16. Li, C., Khanduri, P., Qiang, Y., Sultan, R. I., Chetty, I., Zhu, D.: Auto-prompting SAM for mobile friendly 3D medical image segmentation (2023). arXiv preprint arXiv:2308.14936

  17. Gong, H., Chen, J., Chen, G., Li, H., Li, G., Chen, F.: Thyroid region prior guided attention for ultrasound segmentation of thyroid nodules. Comput. Biol. Med. 155, 106389 (2023)

    Article  Google Scholar 

  18. Pedraza, L., Vargas, C., Narváez, F., Durán, O., Muñoz, E., Romero, E.: An open access thyroid ultrasound image database. In: 10th International Symposium on Medical Information Processing and Analysis, pp. 188–193 (2015)

    Google Scholar 

  19. Wunderling, T., Golla, B., Poudel, P., Arens, C., Friebe, M., Hansen, C.: Comparison of thyroid segmentation techniques for 3D ultrasound. In: Image Processing 2017, pp. 346–352 (2017)

    Google Scholar 

  20. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  Google Scholar 

  21. Yap, M.H., et al.: Breast ultrasound region of interest detection and lesion localisation. Artif. Intell. Med. 107, 101880 (2020)

    Article  Google Scholar 

  22. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imag. 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  23. Kiranyaz, S., et al.: Left ventricular wall motion estimation by active polynomials for acute myocardial infarction detection. IEEE Access 8, 210301–210317 (2020)

    Article  Google Scholar 

  24. Feng, S., et al.: CPFNet: context pyramid fusion network for medical image segmentation. IEEE Trans. Med. Imag. 39(10), 3008–3018 (2020)

    Article  Google Scholar 

  25. Gu, R., et al.: CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans. Med. Imag. 40(2), 699–711 (2020)

    Article  Google Scholar 

  26. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imag. 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  27. Chen, G., Li, L., Dai, Y., Zhang, J., Yap, M.H.: AAU-Net: an adaptive attention U-Net for breast lesions segmentation in ultrasound images. IEEE Trans. Med. Imag. 42(5), 1289–1300 (2023)

    Article  Google Scholar 

  28. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision, pp. 205–218 (2022)

    Google Scholar 

  29. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6881–6890 (2021)

    Google Scholar 

  30. Chen, J., et al.: TransUNet: Transformers make strong encoders for medical image segmentation (2021). arXiv preprint arXiv:2102.04306

  31. Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

  32. Wu, H., Chen, S., Chen, G., Wang, W., Lei, B., Wen, Z.: FAT-Net: feature adaptive transformers for automated skin lesion segmentation. Med. Image Anal. 76, 102327 (2022)

    Google Scholar 

  33. He, A., Wang, K., Li, T., Du, C., Xia, S., Fu, H.: H2Former: an efficient hierarchical hybrid transformer for medical image segmentation. IEEE Trans. Med. Imag. 42(9), 2763–2775 (2023)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 62271220 and Grant 62202179, in part by the Natural Science Foundation of Hubei Province of China under Grant 2022CFB585, and in part by the Fundamental Research Funds for the Central Universities, HUST: 2024JYCXJJ032. The computation is supported by the HPC Platform of HUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengqiang Yan .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1452 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Xiang, Y., Yu, L., Yan, Z. (2024). Beyond Adapting SAM: Towards End-to-End Ultrasound Image Segmentation via Auto Prompting. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15008. Springer, Cham. https://doi.org/10.1007/978-3-031-72111-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72111-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72110-6

  • Online ISBN: 978-3-031-72111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics