[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

FedEvi: Improving Federated Medical Image Segmentation via Evidential Weight Aggregation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15010))

  • 926 Accesses

Abstract

Federated learning enables collaborative knowledge acquisition among clinical institutions while preserving data privacy. However, feature heterogeneity across institutions can compromise the global model’s performance and generalization capability. Existing methods often adjust aggregation weights dynamically to improve the global model’s generalization but rely heavily on the local models’ performance or reliability, excluding an explicit measure of the generalization gap arising from deploying the global model across varied local datasets. To address this issue, we propose FedEvi, a method that adjusts the aggregation weights based on the generalization gap between the global model and each local dataset and the reliability of local models. We utilize a Dirichlet-based evidential model to disentangle the uncertainty representation of each local model and the global model into epistemic uncertainty and aleatoric uncertainty. Then, we quantify the global generalization gap using the epistemic uncertainty of the global model and assess the reliability of each local model using its aleatoric uncertainty. Afterward, we design aggregation weights using the global generalization gap and local reliability. Comprehensive experimentation reveals that FedEvi consistently surpasses 12 state-of-the-art methods across three real-world multi-center medical image segmentation tasks, demonstrating the effectiveness of FedEvi in bolstering the generalization capacity of the global model in heterogeneous federated scenarios. The code will be available at https://github.com/JiayiChen815/FedEvi.

J. Chen and B. Ma—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almazroa, A., Alodhayb, S., Osman, E., et al.: Retinal fundus images for glaucoma analysis: the RIGA dataset. In: Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, vol. 10579, pp. 55–62 (2018)

    Google Scholar 

  2. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., et al.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imag. Grap. 43, 99–111 (2015)

    Google Scholar 

  3. Bloch, N., Madabhushi, A., Huisman, H., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures. TCIA 370(6), 5 (2015)

    Google Scholar 

  4. Chen, J., Ma, B., Cui, H., Xia, Y.: Think twice before selection: federated evidential active learning for medical image analysis with domain shifts. In: CVPR (2024)

    Google Scholar 

  5. Deng, Z., Li, D., Tan, S., et al.: FedGrav: an adaptive federated aggregation algorithm for multi-institutional medical image segmentation. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14221, pp. 170–180. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43895-0_16

    Chapter  Google Scholar 

  6. Depeweg, S., Hernández-Lobato, J.M., Doshi-Velez, F., Udluft, S.: Decomposition of uncertainty for active learning and reliable reinforcement learning in stochastic systems. Stat 1050, 11 (2017)

    Google Scholar 

  7. Fumero, F., Alayón, S., Sanchez, J.L., et al.: Rim-one: an open retinal image database for optic nerve evaluation. In: CBMS (2011)

    Google Scholar 

  8. Guo, Y., Tang, X., Lin, T.: FedBR: improving federated learning on heterogeneous data via local learning bias reduction. In: ICML (2023)

    Google Scholar 

  9. Jha, D., Smedsrud, P.H., Riegler, M.A., et al.: Kvasir-SEG: a segmented polyp dataset. In: MMM (2020)

    Google Scholar 

  10. Jiang, M., Roth, H.R., Li, W., et al.: Fair federated medical image segmentation via client contribution estimation. In: CVPR (2023)

    Google Scholar 

  11. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  12. Lemaître, G., Martí, R., Freixenet, J., et al.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput. Biol. Med. 60, 8–31 (2015)

    Article  Google Scholar 

  13. Li, H., Nan, Y., Del Ser, J., Yang, G.: Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation. Neural Comput. Appl. 1–15 (2022)

    Google Scholar 

  14. Li, T., Sahu, A.K., et al.: Federated optimization in heterogeneous networks. MLSys 2, 429–450 (2020)

    Google Scholar 

  15. Li, X., Jiang, M., et al.: FedBN: federated learning on non-IID features via local batch normalization. In: ICLR (2021)

    Google Scholar 

  16. Li, Z., Lin, T., Shang, X., Wu, C.: Revisiting weighted aggregation in federated learning with neural networks. arXiv preprint arXiv:2302.10911 (2023)

  17. Litjens, G., Toth, R., Van De Ven, W., et al.: Evaluation of prostate segmentation algorithms for MRI: the promise12 challenge. Med. Image Anal. 18(2), 359–373 (2014)

    Article  Google Scholar 

  18. Liu, Q., Chen, C., Qin, J., et al.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: CVPR (2021)

    Google Scholar 

  19. Ma, B., Feng, Y., Chen, G., et al.: Federated adaptive reweighting for medical image classification. Pattern Recogn. 144, 109880 (2023)

    Article  Google Scholar 

  20. Ma, B., Zhang, J., Xia, Y., Tao, D.: VNAS: variational neural architecture search. Int. J. Comput. Vis. 1–25 (2024)

    Google Scholar 

  21. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: NeurIPS, vol. 31 (2018)

    Google Scholar 

  22. McMahan, B., Moore, E., et al.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS (2017)

    Google Scholar 

  23. Orlando, J.I., Fu, H., Breda, J.B., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  24. Qu, Z., Li, X., Duan, R., et al.: Generalized federated learning via sharpness aware minimization. In: ICML (2022)

    Google Scholar 

  25. Rehman, Y.A.U., Gao, Y., De Gusmão, P.P.B., et al.: L-DAWA: layer-wise divergence aware weight aggregation in federated self-supervised visual representation learning. In: ICCV, pp. 16464–16473 (2023)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. In: NeurIPS, vol. 31 (2018)

    Google Scholar 

  28. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  29. Silva, J., Histace, A., Romain, O., et al.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)

    Article  Google Scholar 

  30. Sivaswamy, J., Krishnadas, S., Chakravarty, A., et al.: A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed. Imaging Data Papers 2(1), 1004 (2015)

    Google Scholar 

  31. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2015)

    Article  Google Scholar 

  32. Tan, Y., Long, G., Liu, L., et al.: Fedproto: federated prototype learning across heterogeneous clients. In: AAAI (2022)

    Google Scholar 

  33. Wang, J., Jin, Y., Wang, L.: Personalizing federated medical image segmentation via local calibration. In: ECCV (2022)

    Google Scholar 

  34. Wang, M., Wang, L., Xu, X., et al.: Federated uncertainty-aware aggregation for fundus diabetic retinopathy staging. arXiv preprint arXiv:2303.13033 (2023)

  35. Wu, N., Yu, L., Yang, X., Cheng, K.T., Yan, Z.: FedIIC: towards robust federated learning for class-imbalanced medical image classification. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14221, pp. 692–702. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43895-0_65

    Chapter  Google Scholar 

  36. Xie, M., Li, S., Zhang, R., Liu, C.H.: Dirichlet-based uncertainty calibration for active domain adaptation. In: ICLR (2023)

    Google Scholar 

  37. Zhang, L., Wang, X., Yang, D., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)

    Article  Google Scholar 

  38. Zhang, R., Xu, Q., Yao, J., et al.: Federated domain generalization with generalization adjustment. In: CVPR (2023)

    Google Scholar 

  39. Zhou, Q., Zheng, G.: FedContrast-GPA: heterogeneous federated optimization via local contrastive learning and global process-aware aggregation. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14221, pp. 660–670. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43895-0_62

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants 62171377, in part by Shenzhen Science and Technology Program under Grants JCYJ20220530161616036, in part by the Ningbo Clinical Research Center for Medical Imaging under Grant 2021L003 (Open Project 2022LYKFZD06), and in part by the Innovation Foundation for Master Dissertation of Northwestern Polytechnical University under Grant PF2024013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xia .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare no relevant competing interests.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8644 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Ma, B., Cui, H., Xia, Y. (2024). FedEvi: Improving Federated Medical Image Segmentation via Evidential Weight Aggregation. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15010. Springer, Cham. https://doi.org/10.1007/978-3-031-72117-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72117-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72116-8

  • Online ISBN: 978-3-031-72117-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics