[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution Using Conditional Diffusion Model

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

In clinical practice, tri-modal medical image fusion, compared to the existing dual-modal technique, can provide a more comprehensive view of the lesions, aiding physicians in evaluating the disease’s shape, location, and biological activity. However, due to the limitations of imaging equipment and considerations for patient safety, the quality of medical images is usually limited, leading to sub-optimal fusion performance, and affecting the depth of image analysis by the physician. Thus, there is an urgent need for a technology that can both enhance image resolution and integrate multi-modal information. Although current image processing methods can effectively address image fusion and super-resolution individually, solving both problems synchronously remains extremely challenging. In this paper, we propose TFS-Diff, a simultaneously realize tri-modal medical image fusion and super-resolution model. Specially, TFS-Diff is based on the diffusion model generation of a random iterative denoising process. We also develop a simple objective function and the proposed fusion super-resolution loss, effectively evaluates the uncertainty in the fusion and ensures the stability of the optimization process. And the channel attention module is proposed to effectively integrate key information from different modalities for clinical diagnosis, avoiding information loss caused by multiple image processing. Extensive experiments on public Harvard datasets show that TFS-Diff significantly surpass the existing state-of-the-art methods in both quantitative and visual evaluations. Code is available at https://github.com/XylonXu01 /TFS-Diff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 129.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhutto, J.A., Tian, L., Du, Q., Sun, Z., Yu, L., Tahir, M.F.: CT and MRI medical image fusion using noise-removal and contrast enhancement scheme with convolutional neural network. Entropy 24(3), 393 (2022)

    Article  MathSciNet  Google Scholar 

  2. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  3. Chen, J., Li, X., Luo, L., Ma, J.: Multi-focus image fusion based on multi-scale gradients and image matting. IEEE Trans. Multimedia 24, 655–667 (2021)

    Article  Google Scholar 

  4. Cui, G., Feng, H., Xu, Z., Li, Q., Chen, Y.: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Optics Commun. 341, 199–209 (2015)

    Article  Google Scholar 

  5. Han, Y., Cai, Y., Cao, Y., Xu, X.: A new image fusion performance metric based on visual information fidelity. Information Fusion 14(2), 127–135 (2013)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  8. Jie, Y., Li, X., Zhou, F., Ye, T.: Tri-modal medical image fusion and denoising based on Bitonicx filtering. IEEE Trans. Instrum. Meas. 72, 1–15 (2023)

    Article  Google Scholar 

  9. Jie, Y., Zhou, F., Tan, H., Wang, G., Cheng, X., Li, X.: Tri-modal medical image fusion based on adaptive energy choosing scheme and sparse representation. Measurement 204, 112038 (2022)

    Article  Google Scholar 

  10. Karim, S., Tong, G., Li, J., Qadir, A., Farooq, U., Yu, Y.: Current advances and future perspectives of image fusion: a comprehensive review. Information Fusion 90, 185–217 (2023)

    Article  Google Scholar 

  11. Li, H., Yang, M., Yu, Z.: Joint image fusion and super-resolution for enhanced visualization via semi-coupled discriminative dictionary learning and advantage embedding. Neurocomputing 422, 62–84 (2021)

    Article  Google Scholar 

  12. Li, X., Zhou, F., Tan, H.: Joint image fusion and denoising via three-layer decomposition and sparse representation. Knowl.-Based Syst. 224, 107087 (2021)

    Article  Google Scholar 

  13. Li, Y., Sixou, B., Peyrin, F.: A review of the deep learning methods for medical images super resolution problems. IRBM 42(2), 120–133 (2021)

    Article  Google Scholar 

  14. Ma, J., Chen, C., Li, C., Huang, J.: Infrared and visible image fusion via gradient transfer and total variation minimization. Information Fusion 31, 100–109 (2016)

    Article  Google Scholar 

  15. Ma, J., Tang, L., Fan, F., Huang, J., Mei, X., Ma, Y.: Swinfusion: cross-domain long-range learning for general image fusion via swin transformer. IEEE/CAA J. Automat. Sinica 9(7), 1200–1217 (2022)

    Article  Google Scholar 

  16. Ma, J., Xu, H., Jiang, J., Mei, X., Zhang, X.P.: DDCGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process. 29, 4980–4995 (2020)

    Article  Google Scholar 

  17. Ma, J., Yu, W., Liang, P., Li, C., Jiang, J.: Fusiongan: a generative adversarial network for infrared and visible image fusion. Information Fusion 48, 11–26 (2019)

    Article  Google Scholar 

  18. Mao, Y., Jiang, L., Chen, X., Li, C.: Disc-diff: disentangled conditional diffusion model for multi-contrast MRI super-resolution. arXiv preprint arXiv:2303.13933 (2023)

  19. Rao, D., Xu, T., Wu, X.J.: Tgfuse: an infrared and visible image fusion approach based on transformer and generative adversarial network. IEEE Trans. Image Process. (2023)

    Google Scholar 

  20. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 45(4), 4713–4726 (2022)

    Google Scholar 

  23. Stimpel, B., Syben, C., Schirrmacher, F., Hoelter, P., Dörfler, A., Maier, A.: Multi-modal super-resolution with deep guided filtering. In: Bildverarbeitung für die Medizin 2019. I, pp. 110–115. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25326-4_25

    Chapter  Google Scholar 

  24. Summers, D.: Harvard whole brain atlas: www.med.harvard.edu/aanlib/home.html. J. Neurol. Neurosurg. Psychiatry 74(3), 288–288 (2003)

    Google Scholar 

  25. Tsiligianni, E., Zerva, M., Marivani, I., Deligiannis, N., Kondi, L.: Interpretable deep learning for multimodal super-resolution of medical images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 421–429. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_41

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Xiang, T., Yan, L., Gao, R.: A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain. Infrared Phys. Technol. 69, 53–61 (2015)

    Article  Google Scholar 

  28. Xiao, W., Zhang, Y., Wang, H., Li, F., Jin, H.: Heterogeneous knowledge distillation for simultaneous infrared-visible image fusion and super-resolution. IEEE Trans. Instrum. Meas. 71, 1–15 (2022)

    Google Scholar 

  29. Yin, H., Li, S., Fang, L.: Simultaneous image fusion and super-resolution using sparse representation. Information Fusion 14(3), 229–240 (2013)

    Article  Google Scholar 

  30. Yue, J., Fang, L., Xia, S., Deng, Y., Ma, J.: Diffusion: towards high color fidelity in infrared and visible image fusion with diffusion models. arXiv preprint arXiv:2301.08072 (2023)

  31. Zeng, K., Zheng, H., Cai, C., Yang, Y., Zhang, K., Chen, Z.: Simultaneous single-and multi-contrast super-resolution for brain MRI images based on a convolutional neural network. Comput. Biol. Med. 99, 133–141 (2018)

    Article  Google Scholar 

  32. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  33. Zhang, Y., et al.: Medical image fusion based on quasi-cross bilateral filtering. Biomed. Signal Process. Control 80, 104259 (2023)

    Google Scholar 

  34. Zhao, Z., et al.: Cddfuse: correlation-driven dual-branch feature decomposition for multi-modality image fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5906–5916 (2023)

    Google Scholar 

  35. Zhao, Z., et al.: Ddfm: denoising diffusion model for multi-modality image fusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8082–8093 (2023)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Natural Science Foundation of China under Grant 62201149, in part by the Basic and Applied Basic Research of Guangdong Province under Grant 2023A1515140077, in part by the Natural Science Foundation of Guangdong Province under Grant 2024A1515011880, in part by the Guangdong Higher Education Innovation and Strengthening of Universities Project under Grant 2023KTSCX127, and in part by the Foshan Key Areas of Scientific and Technological Research Project under Grant 2120001008558, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Li .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1462 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Li, X., Jie, Y., Tan, H. (2024). Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution Using Conditional Diffusion Model. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72104-5_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72103-8

  • Online ISBN: 978-3-031-72104-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics