[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Physical-Priors-Guided Aortic Dissection Detection Using Non-Contrast-Enhanced CT Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Aortic dissection (AD) is a severe cardiovascular emergency requiring prompt and precise diagnosis for better survival chances. Given the limited use of Contrast-Enhanced Computed Tomography (CE-CT) in routine clinical screenings, this study presents a new method that enhances the diagnostic process using Non-Contrast-Enhanced CT (NCE-CT) images. In detail, we integrate biomechanical and hemodynamic physical priors into a 3D U-Net model and utilize a transformer encoder to extract superior global features, along with a cGAN-inspired discriminator for the generation of realistic CE-CT-like images. The proposed model not only innovates AD detection on NCE-CT but also provides a safer alternative for patients contraindicated for contrast agents. Comparative evaluations and ablation studies against existing methods demonstrate the superiority of our model in terms of recall, AUC, and F1 score metrics standing at 0.882, 0.855, and 0.829, respectively. Incorporating physical priors into diagnostics offers a significant, nuanced, and non-invasive advancement, seamlessly integrating medical imaging with the dynamic aspects of human physiology. Our code is available at https://github.com/Yukui-1999/PIAD.

First Author and Second Author contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 129.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, B.D., et al.: Detection and hemodynamic evaluation of flap fenestrations in type b aortic dissection with 4D flow MRI: comparison with conventional MRI and CT angiography. Radiol. Cardiothorac. Imaging 1(1), e180009 (2019)

    Google Scholar 

  2. Alter, S.M., Eskin, B., Allegra, J.R.: Diagnosis of aortic dissection in emergency department patients is rare. West. J. Emerg. Med. 16(5), 629 (2015)

    Article  Google Scholar 

  3. Braverman, A.C.: Acute aortic dissection: clinician update. Circulation 122(2), 184–188 (2010)

    Article  Google Scholar 

  4. Cao, K., et al.: Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nat. Med. 1–11 (2023)

    Google Scholar 

  5. Chen, J., Lu, Y., Yu, Q.T.: Transformers make strong encoders for medical image segmentation. arxiv 2021. arXiv preprint arXiv:2102.04306 (2021)

  6. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  7. Dillon-Murphy, D., Noorani, A., Nordsletten, D., Figueroa, C.A.: Multi-modality image-based computational analysis of haemodynamics in aortic dissection. Biomech. Model. Mechanobiol. 15, 857–876 (2016)

    Article  Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  10. Harris, R.J., et al.: Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network. J. Digit. Imaging 32(6), 939–946 (2019)

    Article  Google Scholar 

  11. Hata, A., et al.: Deep learning algorithm for detection of aortic dissection on non-contrast-enhanced CT. Eur. Radiol. 31, 1151–1159 (2021)

    Article  Google Scholar 

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Isensee, F., Jäger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: Automated design of deep learning methods for biomedical image segmentation. arXiv preprint arXiv:1904.08128 (2019)

  14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  15. Karthikesalingam, A., Holt, P., Hinchliffe, R.J., Thompson, M.M., Loftus, I.M.: The diagnosis and management of aortic dissection. Vasc. Endovasc. Surg. 44(3), 165–169 (2010)

    Article  Google Scholar 

  16. Kong, L., Lian, C., Huang, D., Hu, Y., Zhou, Q., et al.: Breaking the dilemma of medical image-to-image translation. In: Advances in Neural Information Processing Systems, vol. 34, pp. 1964–1978 (2021)

    Google Scholar 

  17. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  18. Patel, P.D., Arora, R.R.: Pathophysiology, diagnosis, and management of aortic dissection. Ther. Adv. Cardiovasc. Dis. 2(6), 439–468 (2008)

    Article  Google Scholar 

  19. Pollock, J.D., Murray, I., Bordes, S.J., Makaryus, A.N.: Physiology, cardiovascular hemodynamics (2017)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Roy, S., et al.: Mednext: transformer-driven scaling of convnets for medical image segmentation. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14223, pp. 405–415. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_39

    Chapter  Google Scholar 

  22. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4

    Chapter  Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  24. Williams, J.G., et al.: Aortic dissection is determined by specific shape and hemodynamic interactions. Ann. Biomed. Eng. 50(12), 1771–1786 (2022)

    Article  Google Scholar 

  25. Xiong, X., et al.: A cascaded multi-task generative framework for detecting aortic dissection on 3-D non-contrast-enhanced computed tomography. IEEE J. Biomed. Health Inform. 26(10), 5177–5188 (2022)

    Article  Google Scholar 

  26. Xiong, X., et al.: A cascaded deep learning framework for detecting aortic dissection using non-contrast enhanced computed tomography. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2914–2917. IEEE (2021)

    Google Scholar 

  27. Yi, Y., et al.: Early detection of aortic dissection on non-contrast CT: the combination of deep learning and morphologic characteristics (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Technical Innovation key project of Zhejiang Province (2024C03023) to H.Z, the National Key Research and Development Program of China (Grant No. 2022YFF1202400), and the National Nature Science Foundation of China (Grant No. 82272129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuesen Chu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 231 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, Z. et al. (2024). Physical-Priors-Guided Aortic Dissection Detection Using Non-Contrast-Enhanced CT Images. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72104-5_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72103-8

  • Online ISBN: 978-3-031-72104-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics