[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

PET Image Denoising Based on 3D Denoising Diffusion Probabilistic Model: Evaluations on Total-Body Datasets

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15007))

  • 1399 Accesses

Abstract

Due to various physical degradation factors and limited photon counts detected, obtaining high-quality images from low-dose Positron emission tomography (PET) scans is challenging. The Denoising Diffusion Probabilistic Model (DDPM), an advanced distribution learning-based generative model, has shown promising performance across various computer-vision tasks. However, currently DDPM is mainly investigated in 2D mode, which has limitations for PET image denoising, as PET is usually acquired, reconstructed, and analyzed in 3D mode. In this work, we proposed a 3D DDPM method for PET image denoising, which employed a 3D convolutional network to train the score function, enabling the network to learn 3D distribution. The total-body -FDG PET datasets acquired from the Siemens Biograph Vision Quadra scanner (axial field of view > 1 m) were employed to evaluate the 3D DDPM method, as these total-body datasets needed 3D operations the most to leverage the rich information from different axial slices. All models were trained on 1/20 low-dose images and then evaluated on 1/4, 1/20, and 1/50 low-dose images, respectively. Experimental results indicated that 3D DDPM significantly outperformed 2D DDPM and 3D UNet in qualitative and quantitative assessments, capable of recovering finer structures and more accurate edge contours from low-quality PET images. Moreover, 3D DDPM revealed greater robustness when there were noise level mismatches between training and testing data. Finally, comparing 3D DDPM with 2D DDPM in terms of uncertainty revealed 3D DDPM’s higher confidence in reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 129.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barthel, H., Schroeter, M.L., Hoffmann, K.T., Sabri, O.: PET/MR in dementia and other neurodegenerative diseases. In: Seminars in Nuclear Medicine, vol. 45, pp. 224–233. Elsevier (2015)

    Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Cui, J., et al.: PET image denoising using unsupervised deep learning. Eur. J. Nucl. Med. Mol. Imaging 46, 2780–2789 (2019)

    Article  Google Scholar 

  4. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  5. Dorbala, S., Di Carli, M.F.: Cardiac PET perfusion: prognosis, risk stratification, and clinical management. In: Seminars in Nuclear Medicine, vol. 44, pp. 344–357. Elsevier (2014)

    Google Scholar 

  6. Fu, Y., et al.: AIGAN: Attention-encoding integrated generative adversarial network for the reconstruction of low-dose CT and low-dose PET images. Med. Image Anal. 86, 102787 (2023)

    Article  Google Scholar 

  7. Gong, K., Guan, J., Liu, C.C., Qi, J.: PET image denoising using a deep neural network through fine tuning. IEEE Trans. Radiat. Plasma Med. Sci. 3(2), 153–161 (2018)

    Article  Google Scholar 

  8. Gong, K., Johnson, K., El Fakhri, G., Li, Q., Pan, T.: PET image denoising based on denoising diffusion probabilistic model. Eur. J. Nuclear Med. Mol. Imaging 1–11 (2023)

    Google Scholar 

  9. Hashimoto, F., Ohba, H., Ote, K., Teramoto, A., Tsukada, H.: Dynamic PET image denoising using deep convolutional neural networks without prior training datasets. IEEE Access 7, 96594–96603 (2019)

    Article  Google Scholar 

  10. Hashimoto, F., Onishi, Y., Ote, K., Tashima, H., Reader, A.J., Yamaya, T.: Deep learning-based PET image denoising and reconstruction: a review. Radiol. Phys. Technol. 1–23 (2024)

    Google Scholar 

  11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  12. Jaudet, C., Weyts, K., Lechervy, A., Batalla, A., Bardet, S., Corroyer-Dulmont, A.: The impact of artificial intelligence CNN based denoising on FDG PET radiomics. Front. Oncol. 3136 (2021)

    Google Scholar 

  13. Jiang, C., et al.: PET-diffusion: unsupervised PET enhancement based on the latent diffusion model. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 3–12. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_1

    Chapter  Google Scholar 

  14. Kaplan, S., Zhu, Y.M.: Full-dose pet image estimation from low-dose PET image using deep learning: a pilot study. J. Digit. Imaging 32(5), 773–778 (2019)

    Article  Google Scholar 

  15. Kazerouni, A., et al.: Diffusion models for medical image analysis: a comprehensive survey. arXiv preprint arXiv:2211.07804 (2022)

  16. Lee, S., Chung, H., Park, M., Park, J., Ryu, W.S., Ye, J.C.: Improving 3D imaging with pre-trained perpendicular 2D diffusion models. arXiv preprint arXiv:2303.08440 (2023)

  17. Lei, Y., et al.: Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys. Med. Biol. 64(21), 215017 (2019)

    Article  Google Scholar 

  18. Lv, Y., Xi, C.: PET image reconstruction with deep progressive learning. Phys. Med. Biol. 66(10), 105016 (2021)

    Article  Google Scholar 

  19. Miglioretti, D.L., et al.: The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 167(8), 700–707 (2013)

    Article  Google Scholar 

  20. Ming, Y., et al.: Progress and future trends in PET/CT and PET/MRI molecular imaging approaches for breast cancer. Front. Oncol. 10, 1301 (2020)

    Article  Google Scholar 

  21. Nerella, S., et al.: Transformers in healthcare: a survey. arXiv preprint arXiv:2307.00067 (2023)

  22. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  23. Özbey, M., et al.: Unsupervised medical image translation with adversarial diffusion models. IEEE Trans. Med. Imaging (2023)

    Google Scholar 

  24. Schaefferkoetter, J.D., et al.: Quantitative accuracy and lesion detectability of low-dose 18F-FDG PET for lung cancer screening. J. Nucl. Med. 58(3), 399–405 (2017)

    Article  Google Scholar 

  25. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)

    Google Scholar 

  26. Van der Walt, S., et al.: scikit-image: image processing in python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  27. Wang, Y., et al.: 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage 174, 550–562 (2018)

    Article  Google Scholar 

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Xie, H., et al.: Dose-aware diffusion model for 3D ultra low-dose PET imaging. arXiv preprint arXiv:2311.04248 (2023)

  30. Xue, H., et al.: A 3D attention residual encoder-decoder least-square GAN for low-count PET denoising. Nucl. Instrum. Methods Phys. Res., Sect. A 983, 164638 (2020)

    Article  Google Scholar 

  31. Zhou, L., Schaefferkoetter, J.D., Tham, I.W., Huang, G., Yan, J.: Supervised learning with CycleGAN for low-dose FDG PET image denoising. Med. Image Anal. 65, 101770 (2020)

    Article  Google Scholar 

  32. Zhu, R., Li, X., Zhang, X., Ma, M.: MRI and CT medical image fusion based on synchronized-anisotropic diffusion model. IEEE Access 8, 91336–91350 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuang Gong .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, B., Ozdemir, S., Dong, Y., Shao, W., Shi, K., Gong, K. (2024). PET Image Denoising Based on 3D Denoising Diffusion Probabilistic Model: Evaluations on Total-Body Datasets. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15007. Springer, Cham. https://doi.org/10.1007/978-3-031-72104-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72104-5_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72103-8

  • Online ISBN: 978-3-031-72104-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics