Abstract
We investigate elementary cellular automata from the point of view of (discrete) dynamical systems. By studying small lattice sizes, we obtain the complete phase space of all minimal elementary cellular automata, and, starting from a maximal entropy distribution (all configurations equiprobable), we show how the dynamics affects this distribution. We then investigate how a vanishing noise alters this phase space, connecting attractors and modifying the asymptotic probability distribution. What is interesting is that this modification not always goes in the sense of decreasing the entropy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bandini, S., Chopard, B., Tomassini, M. (eds.): ACRI 2002. LNCS, vol. 2493. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45830-1. isbn: 9783540458302
Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.): ACRI 2004. LNCS, vol. 3305. Springer, Heidelberg (2004). https://doi.org/10.1007/b102055. isbn: 9783540304791
El Yacoubi, S., Chopard, B., Bandini, S. (eds.): ACRI 2006. LNCS, vol. 4173. Springer, Heidelberg (2006). https://doi.org/10.1007/11861201. isbn: 9783540409328
Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.): ACRI 2008. LNCS, vol. 5191. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79992-4. isbn: 9783540799924
Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.): ACRI 2010. LNCS, vol. 6350. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15979-4. isbn: 9783642159794
Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2012. LNCS, vol. 7495. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33350-7. isbn: 9783642333507
Was, J., Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2014. LNCS, vol. 8751. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11520-7. isbn: 9783319115207
El Yacoubi, S., Was, J., Bandini, S. (eds.): ACRI 2016. LNCS, vol. 9863. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2. isbn: 9783319443652
Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.): ACRI 2018. LNCS, vol. 11115. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-8. isbn: 9783319998138
Gwizdaa, T.M., et al. (eds.): ACRI 2020. LNCS, Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-69480-7. isbn: 9783030694807
Chopard, B., et al. (eds.): ACRI 2022. LNCS, Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-14926-9. isbn: 9783031149269
Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601 (1983). https://doi.org/10.1103/revmodphys.55.601
Wuensche, A., Lesser, M.: Global Dynamics of Cellular Automata: An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata. CRC Press, Boca Raton (1992)
Wuensche, A.: Complexity in one-D cellular automata: Gliders, basins of attraction and the Z parameter. University of Sussex, School of Cognitive and Computing Sciences (1994)
Wuensche, A.: Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter. Complexity 4(3), 47–66 (1999). https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3<47::AID-CPLX9>3.0.CO;2-V. issn: 1099-0526
Li, W., Packard, N.: The structure of the elementary cellular automata rule space. Complex Syst. 4(3), 281–297 (1990)
Martinez, G.: A note on elementary cellular automata classification. J. Cellular Automata 8(3–4), 233–259 (2013)
Stauffer, D.: Dynamics and damage spreading in cooperative systems: a numerical search for universality. In: Universalities in Condensed Matter, pp. 246–249. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-51005-2_50. isbn: 9783642510052
Bagnoli, F., Rechtman, R., Ruffo, S.: Damage spreading and Lyapunov exponents in cellular automata. Phys. Lett. A 172(1–2), 34–38 (1992). https://doi.org/10.1016/0375-9601(92)90185-o. issn: 0375-9601
Shereshevsky, M.A.: Lyapunov exponents for one-dimensional cellular automata. J. Nonlinear Sci. 2, 1–8 (1992). https://doi.org/10.1007/bf02429850. issn: 1432-1467
Vispoel, M., Daly, A.J., Baetens, J.M.: Lyapunov exponents of multi-state cellular automata. Chaos Interdisc. J. Nonlinear Sci. 33(4), 043108 (2023). https://doi.org/10.1063/5.0139849. issn: 1089-7682
Baetens, J., Gravner, J.: Introducing Lyapunov profiles of cellular automata. J. Cellular Automata 13(3), 267–286 (2018). issn: 1557-5969
Martins, M.L., de Resende, H.V., Tsallis, C., de Magalhes, A.C.N.: Evidence for a new phase in the Domany-Kinzel cellular automaton. Phys. Rev. Lett. 66(15), 2045 (1991). https://doi.org/10.1103/physrevlett.66.2045. issn: 0031-9007
Bagnoli, F.: On damage-spreading transitions. J. Stat. Phys. 85, 151–164 (1996). https://doi.org/10.1007/bf02175559
Baetens, J., Van der Meeren, W., De Baets, B.: On the dynamics of stochastic elementary cellular automata. J. Cellular Automata 12(1–2), 63–80 (2017)
Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)
Vichniac, G.Y.: Boolean derivatives on cellular automata. Physica D 45(1–3), 63–74 (1990). https://doi.org/10.1016/0167-2789(90)90174-n. issn: 0167-2789
Bagnoli, F.: Boolean derivatives and computation of cellular automata. Int. J. Mod. Phys. C 3(02), 307–320 (1992). https://doi.org/10.1142/s0129183192000257
Acknowledgments
This publication was produced with the co-funding of European Union - Next Generation EU, in the context of The National Recovery and Resilience Plan, Investment 1.5 Ecosystems of Innovation, Project Tuscany Health Ecosystem (THE), CUP: B83C22003920001.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors declare no conflict of interest.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bagnoli, F., Baia, M., Matteuzzi, T. (2024). Effects of a Vanishing Noise on Elementary Cellular Automata Phase-Space Structure. In: Bagnoli, F., Baetens, J., Bandini, S., Matteuzzi, T. (eds) Cellular Automata. ACRI 2024. Lecture Notes in Computer Science, vol 14978. Springer, Cham. https://doi.org/10.1007/978-3-031-71552-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-71552-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71551-8
Online ISBN: 978-3-031-71552-5
eBook Packages: Computer ScienceComputer Science (R0)