[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Effects of a Vanishing Noise on Elementary Cellular Automata Phase-Space Structure

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2024)

Abstract

We investigate elementary cellular automata from the point of view of (discrete) dynamical systems. By studying small lattice sizes, we obtain the complete phase space of all minimal elementary cellular automata, and, starting from a maximal entropy distribution (all configurations equiprobable), we show how the dynamics affects this distribution. We then investigate how a vanishing noise alters this phase space, connecting attractors and modifying the asymptotic probability distribution. What is interesting is that this modification not always goes in the sense of decreasing the entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bandini, S., Chopard, B., Tomassini, M. (eds.): ACRI 2002. LNCS, vol. 2493. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45830-1. isbn: 9783540458302

    Book  Google Scholar 

  2. Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.): ACRI 2004. LNCS, vol. 3305. Springer, Heidelberg (2004). https://doi.org/10.1007/b102055. isbn: 9783540304791

    Book  Google Scholar 

  3. El Yacoubi, S., Chopard, B., Bandini, S. (eds.): ACRI 2006. LNCS, vol. 4173. Springer, Heidelberg (2006). https://doi.org/10.1007/11861201. isbn: 9783540409328

    Book  Google Scholar 

  4. Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.): ACRI 2008. LNCS, vol. 5191. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79992-4. isbn: 9783540799924

    Book  Google Scholar 

  5. Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.): ACRI 2010. LNCS, vol. 6350. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15979-4. isbn: 9783642159794

    Book  Google Scholar 

  6. Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2012. LNCS, vol. 7495. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33350-7. isbn: 9783642333507

    Book  Google Scholar 

  7. Was, J., Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2014. LNCS, vol. 8751. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11520-7. isbn: 9783319115207

  8. El Yacoubi, S., Was, J., Bandini, S. (eds.): ACRI 2016. LNCS, vol. 9863. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2. isbn: 9783319443652

  9. Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.): ACRI 2018. LNCS, vol. 11115. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-8. isbn: 9783319998138

    Book  Google Scholar 

  10. Gwizdaa, T.M., et al. (eds.): ACRI 2020. LNCS, Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-69480-7. isbn: 9783030694807

    Book  Google Scholar 

  11. Chopard, B., et al. (eds.): ACRI 2022. LNCS, Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-14926-9. isbn: 9783031149269

    Book  Google Scholar 

  12. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601 (1983). https://doi.org/10.1103/revmodphys.55.601

    Article  MathSciNet  Google Scholar 

  13. Wuensche, A., Lesser, M.: Global Dynamics of Cellular Automata: An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata. CRC Press, Boca Raton (1992)

    Google Scholar 

  14. Wuensche, A.: Complexity in one-D cellular automata: Gliders, basins of attraction and the Z parameter. University of Sussex, School of Cognitive and Computing Sciences (1994)

    Google Scholar 

  15. Wuensche, A.: Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter. Complexity 4(3), 47–66 (1999). https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3<47::AID-CPLX9>3.0.CO;2-V. issn: 1099-0526

    Article  MathSciNet  Google Scholar 

  16. Li, W., Packard, N.: The structure of the elementary cellular automata rule space. Complex Syst. 4(3), 281–297 (1990)

    MathSciNet  Google Scholar 

  17. Martinez, G.: A note on elementary cellular automata classification. J. Cellular Automata 8(3–4), 233–259 (2013)

    MathSciNet  Google Scholar 

  18. Stauffer, D.: Dynamics and damage spreading in cooperative systems: a numerical search for universality. In: Universalities in Condensed Matter, pp. 246–249. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-51005-2_50. isbn: 9783642510052

  19. Bagnoli, F., Rechtman, R., Ruffo, S.: Damage spreading and Lyapunov exponents in cellular automata. Phys. Lett. A 172(1–2), 34–38 (1992). https://doi.org/10.1016/0375-9601(92)90185-o. issn: 0375-9601

    Article  Google Scholar 

  20. Shereshevsky, M.A.: Lyapunov exponents for one-dimensional cellular automata. J. Nonlinear Sci. 2, 1–8 (1992). https://doi.org/10.1007/bf02429850. issn: 1432-1467

    Article  MathSciNet  Google Scholar 

  21. Vispoel, M., Daly, A.J., Baetens, J.M.: Lyapunov exponents of multi-state cellular automata. Chaos Interdisc. J. Nonlinear Sci. 33(4), 043108 (2023). https://doi.org/10.1063/5.0139849. issn: 1089-7682

    Article  MathSciNet  Google Scholar 

  22. Baetens, J., Gravner, J.: Introducing Lyapunov profiles of cellular automata. J. Cellular Automata 13(3), 267–286 (2018). issn: 1557-5969

    MathSciNet  Google Scholar 

  23. Martins, M.L., de Resende, H.V., Tsallis, C., de Magalhes, A.C.N.: Evidence for a new phase in the Domany-Kinzel cellular automaton. Phys. Rev. Lett. 66(15), 2045 (1991). https://doi.org/10.1103/physrevlett.66.2045. issn: 0031-9007

    Article  Google Scholar 

  24. Bagnoli, F.: On damage-spreading transitions. J. Stat. Phys. 85, 151–164 (1996). https://doi.org/10.1007/bf02175559

    Article  MathSciNet  Google Scholar 

  25. Baetens, J., Van der Meeren, W., De Baets, B.: On the dynamics of stochastic elementary cellular automata. J. Cellular Automata 12(1–2), 63–80 (2017)

    MathSciNet  Google Scholar 

  26. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)

    MathSciNet  Google Scholar 

  27. Vichniac, G.Y.: Boolean derivatives on cellular automata. Physica D 45(1–3), 63–74 (1990). https://doi.org/10.1016/0167-2789(90)90174-n. issn: 0167-2789

    Article  MathSciNet  Google Scholar 

  28. Bagnoli, F.: Boolean derivatives and computation of cellular automata. Int. J. Mod. Phys. C 3(02), 307–320 (1992). https://doi.org/10.1142/s0129183192000257

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This publication was produced with the co-funding of European Union - Next Generation EU, in the context of The National Recovery and Resilience Plan, Investment 1.5 Ecosystems of Innovation, Project Tuscany Health Ecosystem (THE), CUP: B83C22003920001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Bagnoli .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagnoli, F., Baia, M., Matteuzzi, T. (2024). Effects of a Vanishing Noise on Elementary Cellular Automata Phase-Space Structure. In: Bagnoli, F., Baetens, J., Bandini, S., Matteuzzi, T. (eds) Cellular Automata. ACRI 2024. Lecture Notes in Computer Science, vol 14978. Springer, Cham. https://doi.org/10.1007/978-3-031-71552-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71552-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71551-8

  • Online ISBN: 978-3-031-71552-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics