[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Practical Applicability of Tree Spacing Passability Analysis on Vehicle Path Planning

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14615))

  • 49 Accesses

Abstract

The article describes an off-road passability analysis as a key component of many autonomous systems, where plenty of geographical, technical as well as tactical factors or conditions must be included. One of the most challenging environments for the assessment of trafficability is forest. The major factor determining the trafficability through forests is a tree spacing. However, even if tree spacing is wider than the width of a vehicle, the passability is not guaranteed. The object of this paper is to point out that digital data files from the varied forests types were obtained by a geodetic as well as aerial photogrammetric methods. That data sources can be considered as an essential factor of digital battlefield environment influencing the path’s length extension. Predetermined routes were calculated and compared via two types of analyses in order to verify if they can be used as an input factor for autonomous ground vehicle’s (UGV) decision making process. This analysis can be modified and extended due to other geographical, tactical or technical features using others terrain feature modelling and advanced algorithms, subsequently that results can be used for commander’s decision-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maio, C.V., Tenenbaum, D.E., Brown, C.J., Mastone, V.T., Gontz, A.M.: Application of geographic information technologies to historical landscape reconstruction and military terrain analysis of an American Revolution Battlefield: preservation potential of historic lands in urbanized settings, Boston, Massachusetts, USA. J. Cult. Herit. 14, 317–331 (2013)

    Google Scholar 

  2. Department of the Army: Army Field Manual No. 5-33: Terrain Analysis. Department of the Army, Washington DC, USA (1990)

    Google Scholar 

  3. STANAG 3992: Military Geographic Documentation—Terrain Analysis-AGeoP-1 (A) (1999). https://standards.globalspec.com/std/464406/STANAG%203992. Accessed 6 July 2021

  4. Rybansky, M.: Effect of the Geographic Factors on the Cross Country Movement During Military Operations and the Natural Disasters. University of Defence Brno, Brno (2007). ISBN: 978-80-7231-238-2

    Google Scholar 

  5. Mei Siang, K., Hakimey, A.: The review of crisis management facing natural disaster. researchgate.net (2013)

    Google Scholar 

  6. Rybansky, M.: Modelling of the optimal vehicle route in terrain in emergency situations using GIS data. In: 8th International Symposium of the Digital Earth (ISDE8) 2013, Kuching, Sarawak, Malaysia (2014). IOP Conf. Ser. Earth Environ. Sci. 18, 012071. ISSN: 1755-1307. https://doi.org/10.1088/1755-1315/18/1/012131

  7. Křišťálová, D.: A traffic ability of the terrain. Econ. Manag. 2014, 38–47 (2014). ISSN: 1802-3975. https://www.obalkyknih.cz/file/toc/227857/pdf

  8. Nohel, J., Stodola, P., Flasar, Z.: Combat UGV support of company task force operations. In: Mazal, J., Fagiolini, A., Vasik, P., Turi, M. (eds.) MESAS 2020. LNCS, vol. 12619, pp. 29–42. Springer, Cham (2021). ISSN: 0302-9743. ISBN: 978-3-030-70739-2. https://doi.org/10.1007/978-3-030-70740-8_3

    Chapter  Google Scholar 

  9. Mazal, J., Stodola, P., Hrabec, D., Kutěj, L., Podhorec, M., Křišťálová, D.: Mathematical modeling and optimization of the tactical entity defensive engagement. Int. J. Math. Models Methods Appl. Sci. 9, 600–606 (2015). ISSN: 1998-0140

    Google Scholar 

  10. Nohel, J., Flasar, Z.: Maneuver control system CZ. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 379–388. Springer, Cham (2020). ISBN: 978- 3-030-43889-0. https://doi.org/10.1007/978-3-030-43890-6_31

    Chapter  Google Scholar 

  11. Bruzzone, A.G., Massei, M.: Simulation-based military training. In: Mittal, S., Durak, U., Ören, T. (eds.) Guide to Simulation-Based Disciplines. SFMA, pp. 315–361. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61264-5_14

    Chapter  Google Scholar 

  12. Štefek, A., Časar, J., Starý, V., Gacho, L.: Coupling of the ODE and DES models for simulation of air defence in war gaming experiment. Int. J. Simul. Model. 21(1), 41–52 (2022). ISSN: 1726-4529. IF 2,900. https://doi.org/10.2507/IJSIMM21-1-586

  13. Kompan, J., Jančo, J., Hrnčiar, M.: Initial assesssement of the influence of the war in Ukraine on the development of professional education of military engeneering officers. In: 15th Annual International Conference of Education, Research and Innovation, pp. 2612–2617 (2022)

    Google Scholar 

  14. Tarapata, Z.: Military route planning in battlefield simulation: effectiveness problems and potential solutions. J. Telecommun. Inf. Technol. 4, 47–56 (2003)

    Google Scholar 

  15. Sharma, S.: Unmanned ground vehicles: global developments and future battlefield. IDR Indian Defence Review, New Delhi, India (2022). http://www.indiandefencereview.com/spotlights/unmanned-ground-vehicles-global-developments-and-futurebattlefield/

  16. TAROS 6*6 (UGV in the Czech Army). Univerzita obrany vyvíjí umělou inteligenci do terénu | Ministerstvo obrany (army.cz)

    Google Scholar 

  17. Ivan, J., Sustr, M., Pekar, O., Potuzak, L.: Prospects for the use of unmanned ground vehicles in artillery survey. In: Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics, pp. 467–475. SCITEPRESS - Science and Technology Publications, Lisbon (2022)

    Google Scholar 

  18. Zahradníček, P., Rak, L., Flasar, Z.: Use of alternative means of movement in tactical tasks of Czech army units. Transp. Res. Procedia 55, 204–211 (2021). https://doi.org/10.1016/j.trpro.2021.06.023

    Article  Google Scholar 

  19. Dawid, W., Pokonieczny, K.: Methodology of using terrain passability maps for planning the movement of troops and navigation of unmanned ground vehicles. Sensors 21, 4682 (2021). https://doi.org/10.3390/s21144682

    Article  Google Scholar 

  20. Drozd, J., Rak, L., Zahradníček, P., Stodola, P., Hodický, J.: Effectiveness evaluation of aerial reconnaissance in battalion force protection operation using the constructive simulation. J. Defense Model. Simul. Appl. Methodol. Technol. 20, 181–196 (2023). https://doi.org/10.1177/15485129211040373

    Article  Google Scholar 

  21. Drozd, J., Stodola, P., Křišťálová, D., Kozůbek, J.: Experiments with the UAS reconnaissance model in the real environment. In: Mazal, J. (ed.) MESAS 2017. LNCS, vol. 10756, pp. 340–349. Springer, Cham (2017). ISSN: 0302-9743. ISBN: 978-3-319-76071-1. https://doi.org/10.1007/978-3-319-76072-8_24

    Chapter  Google Scholar 

  22. Ding, Y., Xin, B., Chen, J.: A review of recent advances in coordination between unmanned aerial and ground vehicles. Unmanned Syst. 09, 97–117 (2020). https://doi.org/10.1142/s2301385021500084

    Article  Google Scholar 

  23. Lazna, T., Gabrlik, P., Jilek, T., Zalud, L.: Cooperation between an unmanned aerial vehicle and an unmanned ground vehicle in highly accurate localization of gamma radiation hotspots. Int. J. Adv. Robot. Syst. 15(1) (2018). https://doi.org/10.1177/1729881417750787

  24. Moafipoor, S., Bock, L., Fayman, J.A., Conroy, E.: Vision-based collaborative navigation for UAV-UGV-dismounted units in GPS challenged environments. In: Proceedings of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), Miami, Florida, USA, pp. 573–584 (2020). https://doi.org/10.33012/2020.17684

  25. Bendett, S.: Russian unmanned vehicle developments: Syria and beyond. In: Mankoff, J. (ed.) JSTOR: Improvisation and Adaptability in the Russian Military, pp. 38–47. Center for Strategic and International Studies and JSTOR, New York (2020). http://www.jstor.com/stable/resrep24241.9

  26. Roblin, S.: Israel is sending robots with machine guns to the Gaza border. The Daily Beast Company LLC, USA (2021). https://www.thedailybeast.com/israel-is-sending-robots-with-machine-guns-to-the-gaza-border

  27. Developing remote-controlled robots to clear roadside bombs: North Atlantic treaty organization, Brussels, Belgium (2013). https://www.nato.int/cps/en/natolive/news_94095.htm

  28. Taros 6*6 with autonomous weapon station. Český bojový robot TAROS 6x6 Furbo | Armádní noviny (armadninoviny.cz)

    Google Scholar 

  29. Uppal, R.: Russia deployed family of killer robots, for combat and demining in Syria and for counter terrorism operations. IDST International Defense, Security & Technology, San Jose (2019). https://idstch.com/military/army/russia-developing-family-of-killer-robots-conduct-war-games/

  30. Shachtman, N.: First Armed Robots on Patrol in Iraq. WIRED, New York (2007). https://www.wired.com/2007/08/httpwwwnational/

  31. Combat robots & drones used at Zapad 2017 episodes, Kaliningrad region. Ministry of Defence of the Russian Federation, Moscow (2017). https://www.eng.mil.ru/en/news_page/country/more.htm?id=12142814@egNews

  32. Stodola, P., Mazal, J.: Tactical decision support system to aid commanders in their decision-making. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 396–406. Springer, Cham (2016). ISSN: 0302-9743. ISBN: 978-3-319-47604-9. https://doi.org/10.1007/978-3-319-47605-6_32

    Chapter  Google Scholar 

  33. Hujer, V., Slouf, V., Farlik, J.: Utility as a key criterion of a decision-making on structure of the ground based air defence. In: Mazal, J., Fagiolini, A., Vasik, P., Turi, M., Bruzzone, A., Pickl, S., Neumann, V., Stodola, P. (eds.) MESAS 2021. LNCS, vol. 13207, pp. 249–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-98260-7_15

    Chapter  Google Scholar 

  34. Stodola, P., Drozd, J., Nohel, J., Michenka, K.: Model of observation posts deployment in tactical decision support system. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 231–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_18. ISSN: 0302-9743. ISBN 978-3-030-43890-6. ASTES J. (2020). ISSN: 2415-6698 https://doi.org/10.25046/aj050653

    Chapter  Google Scholar 

  35. Hodicky, J., Frantis, P.: Decision support system for a commander at the operational level. In: Dietz, J.L.G. (ed.) Proceedings of the International Conference on Knowledge Engineering and Ontology Development, KEOD 2009, Funchal, Madeira, October 2009, pp. 359–362. INSTICC Press (2009). ISBN: 978-989-674-012-2

    Google Scholar 

  36. Zhang, J., Yue, X., Zhang, H., Xiao, T.: Optimal unmanned ground vehicle—unmanned aerial vehicle formation-maintenance control for air-ground cooperation. Appl. Sci. 12, 3598 (2022). https://doi.org/10.3390/app12073598

    Article  Google Scholar 

  37. Gross, J., et al.: Field-testing of a UAV-UGV team for GNSS-denied navigation in subterranean environments. In: Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, Florida, USA, pp. 2112–2124 (2019). https://doi.org/10.33012/2019.16912

  38. Can Future Exist with or Without Robotics Autonomous Systems? Jan Mazal: Budoucí bojiště si bez robotizovaných systémů lze jen těžko představit | CZDEFENCE - czech army and defence magazine

    Google Scholar 

  39. Zahradníček, P., Rak, L., Zezula, J.: Budoucí prostředí a robotické autonomní systémy. Vojenské reflexie 17, 56–72 (2022). https://doi.org/10.52651/vr.a.2022.2.56-72

    Article  Google Scholar 

  40. Dawid, W., Pokonieczny, K.: Analysis of the possibilities of using different resolution digital elevation models in the study of microrelief on the example of terrain passability. Remote Sens. 12, 4146 (2020). https://doi.org/10.3390/rs12244146

    Article  Google Scholar 

  41. Pokonieczny, K., Borkowska, S.: Using high resolution spatial data to develop military maps of passability. In: Proceedings of the 2019 International Conference on Military Technologies (ICMT), Brno, Czech Republic, 30–31 May 2019, pp. 1–8 (2019)

    Google Scholar 

  42. Křišťálová. D.: Evaluation of the data applicable for determining the routes of movements of military vehicles in tactical operation. In: The Complex Physiognomy of the International Secuirity Environment, pp. 197–203. “Nicolae Balcescu” Land Force Academy Publishing House, Sibiu (2015). ISBN: 978-973-153-215-8

    Google Scholar 

  43. Kristalova, D., et al.: Geographical data and algorithms usable for decision-making process. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 226–241. Springer, Cham (2016). ISSN: 0302-9743. ISBN: 978-3-319-47604-9. https://doi.org/10.1007/978-3-319-47605-6_19

    Chapter  Google Scholar 

  44. National Imagery and Mapping Agency. Military Specification MIL-V-89032 Vector Smart Map (VMAP) Level 2. National Geospatial-Intelligence Agency, Fort Belvoir (1993)

    Google Scholar 

  45. Digital Geographic Information Standard (DIGEST), 2nd ed. STANAG 7074. Department of US Army, Washington, DC (1998)

    Google Scholar 

  46. Rybanský, M., et al.: GNSS signal quality in forest stands for off-road vehicle navigation. Appl. Sci. 13(10), 6142 (2023). ISSN: 2076-3417. IF 2,700. https://doi.org/10.3390/app13106142

  47. Borges, C.D.B., Almeida, A.M.A., Paula Júnior, I.C., de Mesquita Sá Junior, J.J.: A strategy and evaluation method for ground global path planning based on aerial images. Expert Syst. Appl. 137, 232–252 (2019)

    Google Scholar 

  48. Graf, U., Borges, P., Hernández, E., Siegwart, R., Dubé, R.: Optimization-based terrain analysis and path planning in unstructured environments. In: Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019, pp. 5614–5620 (2019)

    Google Scholar 

  49. Jiang, L., et al.: An eight-direction scanning detection algorithm for the mapping robot pathfinding in unknown indoor environment. Sensors 18, 4254 (2018)

    Article  Google Scholar 

  50. Ropero, F., Muñoz, P., R-Moreno, M.D.: TERRA: a path planning algorithm for cooperative UGV–UAV exploration. Eng. Appl. Artif. Intell. 78, 260–272 (2019)

    Article  Google Scholar 

  51. Vandapel, N., Donamukkala, R.R., Hebert, M.: Unmanned ground vehicle navigation using aerial ladar data. Int. J. Robot. Res. 25(1), 31–51 (2006). ISSN: 0278-3649. ISSN: 1741-3176 (on-line). https://doi.org/10.1177/0278364906061161

  52. Kristalova, D.: Vliv povrchu terénu na pohyb vojenských vozidel (The effect of the terrain cover on the movement of military vehicles). The Ph.D. thesis (in Czech), The Univerzity of Defence, Brno, The Czech Republic, 318 pp (2013)

    Google Scholar 

  53. Kristalova, D., Rybanský, M.: The methods used for creating a new system of cross-country movement and detrmination of possible movemnts in the terrain. The Conference Paper, Romenia, 8 pp (2012). ISSN: 1843-6722

    Google Scholar 

  54. Rybanský, M.: Cross-Country Movement - The Impact and Evaluation of Geographical Factors, The Czech Republic, Brno, 114 p. (2009). ISBN: 978-80-7204-661-4

    Google Scholar 

  55. Zelinková, D.: The analysis of the obtaining and using of the information for evaluation of CCM, Analýza získávání a využitelnosti informací pro vyhodnocení průchodnosti území, DP, VA Brno (2002). (in Czech)

    Google Scholar 

  56. Dohnal, F., Hubacek, M., Sturcova, M., Bures, M., Simkova, K.: Identification of microrelief shapes along the line objects over DEM data and assessing their impact on the vehicle movement. In: 2017 International Conference on Military Technologies (ICMT), pp. 262–267 (2017)

    Google Scholar 

  57. Mazal, J., et al.: Modelling of the microrelief impact to the cross country movement. In: Proceedings of the 22nd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation (HMS 2020), pp. 66–70 (2020)

    Google Scholar 

  58. Kristalova, D., et al.: Modelling and simulation of microrelief impact on ground path extension. In: Mazal, J., et al. (eds.) MESAS 2021. LNCS, vol. 13207, pp. 93–112. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98260-7_6

    Chapter  Google Scholar 

  59. Kristalova, D.: An effect of sandy soils on the movement in the terrain. In: Hodicky, J. (ed.) MESAS 2014. LNCS, vol. 8906, pp. 262–273. Springer, Cham (2014). ISBN: 978-3-319-13823-7. https://doi.org/10.1007/978-3-319-13823-7_23

    Chapter  Google Scholar 

  60. Kristalova, D., Mazal, J.: The effect of land cover on movement of vehicles in the terrain. In: Proceedings ICESSE 2014: International Conference on Earth and Space Sciences and Engineering, London, United Kingdom, 28–29 November 2014, pp. 210–215. World Academy of Science, Engineering and Technology, London (2014). ISSN: 1307-6892

    Google Scholar 

  61. Hubáček, M., Rybansky, M., Cibulova, K., Brenov, M., Ceplova, L.: Mapping the passability of soils for vehicle movement. Kvüõa Toim 21, 5–18 (2015)

    Google Scholar 

  62. Jayakumar, P., Mechergui, D., Wasfy, T.M.: Understanding the effects of soil characteristics on mobility. In: Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017 (2017)

    Google Scholar 

  63. Hošková-Mayerová, Š, Talhofer, V., Otřísal, P., Rybanský, M.: Influence of weights of geographical factors on the results of multicriteria analysis in solving spatial analyses. ISPRS Int. J. Geo Inf. 9, 489 (2020)

    Article  Google Scholar 

  64. Shoop, S., Knuth, M., Wieder, W.: Measuring vehicle impacts on snow roads. J. Terramech. 50, 63–71 (2013)

    Article  Google Scholar 

  65. Sobotka, J., Benda, M., Coufal, D.: Point clouds in projects of the Czech army corps of engineers. In: International Conference on Military Technologies, ICMT 2021 – Proceedings, Brno (2021). ISBN: 978-1-6654-3724-0. https://doi.org/10.1109/ICMT52455.2021.9502770

  66. Vosahlik, D., Turnovec, P., Pekar, J., Hanis, T.: Vehicle trajectory planning: minimum violation planning and model predictive control comparison. In: 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, pp. 145–150 (2022). https://doi.org/10.1109/IV51971.2022.9827430. https://ieeexplore.ieee.org/iel7/9826996/9826997/09827430.pdf

  67. Cech, J., Hanis, T., Kononisky, A., Rurtle, T., Svancar, J., Twardzik, T.: Self-supervised learning of camera-based drivable surface roughness. In: 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, pp. 1319–1325 (2021). https://doi.org/10.1109/IV48863.2021.9575288. https://ieeexplore.ieee.org/iel7/9575127/9575130/09575288.pdf

  68. Šimon, O., Popela, M.: Precision control of stepper motors for tunable waveguide shunt. Przegląd Elektrotechniczny 98(8), 106–110 (2022). ISSN: 0033-2097. IF 0,500. https://doi.org/10.15199/48.2022.08.20

  69. Popela, M., Leuchter, J., Olivova, J., Richterova, M.: Development of a remote-controlled electrical interference vehicle with a magnetron. Sensors 20(21), 6309 (2020). ISSN: 1424-3210. IF 3,576. https://doi.org/10.3390/s20216309

  70. Mazal, J.: Real time maneuver optimization in general environment. In: Brezina, T., Jablonski, R. (eds.) Recent Advances in Mechatronics, pp. 191–196. Springer, Heidelberg (2010). ISBN: 978-3-642-05021-3. https://doi.org/10.1007/978-3-642-05022-0_33

    Chapter  Google Scholar 

  71. Mazal, J., Bruzzone, A., Turi, M., Biagini, M., Corona, F., Jones, J.: NATO use of modelling and simulation to evolve autonomous systems. In: Complexity Challenges in Cyber Physical Systems: Using Modeling and Simulation (M&S) to Support Intelligence, Adaptation and Autonomy, pp. 53–80. Wiley, Hoboken (2019). ISBN: 978-1-119-55239-0

    Google Scholar 

  72. Kotikalapudi, P., Elangovan, V.: Obstacle avoidance and path finding for mobile robot navigation, pp. 333–344. AIRCC Publishing Corporation, Chennai (2020). https://doi.org/10.5121/csit.2020.101425

  73. Alkawaz, A.N., Al-qassar, A.: Obstacle avoidance techniques for robot path planning. J. Eng. Sci. 56–65 (2019). ISSN: 2312-2498. https://doi.org/10.26367/DJES/VOL.12/NO.1/7

  74. Wang, H., Zhang, H., Wang, K., Zhang, C., Yin, C., Kang, X.: Off-road path planning based on improved ant colony algorithm. Wireless Pers. Commun. 102, 1705–1721 (2018)

    Article  Google Scholar 

  75. Muñoz, P., R-Moreno, M.D., Castaño, B.: 3Dana: a path planning algorithm for surface robotics. Eng. Appl. Artif. Intell. 60, 175–192 (2017)

    Article  Google Scholar 

  76. Liu, Q., Zhao, L., Tan, Z., Chen, W.: Global path planning for autonomous vehicles in off-road environment via an A-star algorithm. Int. J. Veh. Auton. Syst. 13, 330–339 (2017)

    Article  Google Scholar 

  77. Saranya, C., Unnikrishnan, M., Ali, S.A., Sheela, D.S., Lalithambika, V.R.: Terrain based D∗ algorithm for path planning. IFAC Pap. Online 49, 178–182 (2016)

    Article  Google Scholar 

  78. Leenen, L., Terlunen, A., le Roux, H.: A constraint programming solution for the military unit path finding problem. Taylor & Francis Group, Boca Raton (2012). ISBN: 978-0-429-10481-7

    Google Scholar 

  79. Duchoň, F., et al.: Path planning with modified a star algorithm for a mobile robot. Procedia Eng. 96, 59–69 (2014)

    Article  Google Scholar 

  80. García, A.M., Guervós, J.J.M., Laredo, J.L., Valdivieso, P., Millán, C., Torrecillas, J.: Balancing safety and speed in the military path finding problem: analysis of different ACO algorithms. In: Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, London, UK, 7–11 July 2007 (2007)

    Google Scholar 

  81. Dere, E., Durdu, A.: Usage of the A* algorithm to find the shortest path in transportation systems. In: Proceedings of the International Conference on Advanced Technologies, Computer Engineering and Science (ICATCES 2018), Safranbolu, Turkey, 11–13 May 2018, p. 4 (2018)

    Google Scholar 

  82. Kristalova, D., Mazal, J., Neubauer, J.: The effect of geographical environmental on speed and safety of movement on vehicles. The Conference Paper, The Czech Republic, 8 pp (2012). ISBN: 978-80-7231-871-1

    Google Scholar 

  83. NATO Reference Mobility Model, University of Defence, Department of Military Geography. https://www.irozhlas.cz/veda-technologie/technologie/vojenska-aplikace-planovani-trasy-brno-univerzita-obrany_2308151920_nel

  84. McCullough, M., Jayakumar, P., Dasch, J., Gorsich, D.: The next generation NATO reference mobility model development. J. Terramech. 73, 49–60 (2017)

    Article  Google Scholar 

  85. Paramsothy, J., et al.: Next-generation NATO reference mobility model (NRMM) development. Defense Technical Information Center, Fort Belvoir (2018)

    Google Scholar 

  86. Wasfy, T., Jayakumar, P.: Next-generation NATO reference mobility model complex terramechanics—part 1: definition and literature review. J. Terramech. 96, 45–57 (2021)

    Article  Google Scholar 

  87. Capek, J., Zerzan, P., Simkova, K.: Influence of tree spacing on vehicle manoeuvers in forests. In: 2019 International Conference on Military Technologies (ICMT), pp. 1–7 (2019)

    Google Scholar 

  88. Capek, J., Hubacek, M., Kristalova, D., Mertova, E.: Effect of tree location accuracy on vegetation passability analysis. In: ICMT 2023 (2023). In print

    Google Scholar 

  89. SMSS Squad Mission Support System UGV Unmanned Ground Vehicle. United States US Army Military Equipment UK. Dostupné z (2023). https://www.armyrecognition.com/us_army_wheeled_and_armoured_vehicle_uk/smss_ugv_unmanned_ground_vehicle_system_data_sheet_specifications_information_description_pictures.html

  90. THeMIS - Milrem. Milrem. Dostupné z (2023). https://milremrobotics.com/defence/

  91. TAROS 6*6 Version 1. https://www.armadninoviny.cz/cesky-bojovy-robot-taros-6x6-furbo.html

  92. TATRA 810. https://acr.army.cz/technika-a-vyzbroj/automobilni/stredni-nakladni-automobil-tatra-810-89746/

Download references

Acknowledgement

The work by authors from the University of Defence from the Faculty of Military Technologies and the Department of Military Robotics presented in this paper has been supported by the Ministry of Defence of the Czech Republic – research project DZRO-FVT22-VAROPS.

Next this research was funded by the Faculty of Mechanical Engineering, Brno University of Technology under the project FSI-S-23-8334 “Research and development of new methods and approaches in the field of modelling and control of mechatronic systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Kristalova .

Editor information

Editors and Affiliations

Ethics declarations

The author(s) has no competing interests to declare that are relevant to the content of this manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kristalova, D., Capek, J., Adamek, R., Nohel, J., Kriz, J. (2025). Practical Applicability of Tree Spacing Passability Analysis on Vehicle Path Planning. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2023. Lecture Notes in Computer Science, vol 14615. Springer, Cham. https://doi.org/10.1007/978-3-031-71397-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71397-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71396-5

  • Online ISBN: 978-3-031-71397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics