[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fully Homomorphic Training and Inference on Binary Decision Tree and Random Forest

  • Conference paper
  • First Online:
Computer Security – ESORICS 2024 (ESORICS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14984))

Included in the following conference series:

  • 412 Accesses

Abstract

This paper introduces a new method for training decision trees and random forests using CKKS homomorphic encryption (HE) in cloud environments, enhancing data privacy from multiple sources. The innovative Homomorphic Binary Decision Tree (HBDT) method utilizes a modified Gini Impurity index (MGI) for node splitting in encrypted data scenarios. Notably, the proposed training approach operates in a single cloud security domain without the need for decryption, addressing key challenges in privacy-preserving machine learning. We also propose an efficient method for inference utilizing only addition for path evaluation even when both models and inputs are encrypted, achieving O(1) multiplicative depth. Experiments demonstrate that this method surpasses the previous study by Akavia et al.’s by at least 3.7 times in the speed of inference. The study also expands to privacy-preserving random forests, with GPU acceleration ensuring feasibly efficient performance in both training and inference.

This work was supported in part by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) [NO. 2022-0-01047, Development of statistical analysis algorithm and module using homomorphic encryption based on real number operation]. Also, it was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0017123, The Competency Development Program for Industry Specialist).

H. Shin and J. Choi—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is \(\textsf{FindMinPosGroup}()\) where # of group is 1 and group size is M. It can be implemented easily with \(\textsf{FindMaxPosGroup}()\), explained in Appendix A in [36].

  2. 2.

    https://github.com/intuit/Decision-Trees-over-FHE.git.

References

  1. I Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 439–450 (2000)

    Google Scholar 

  2. Akavia, A., Leibovich, M., Resheff, Y.S., Ron, R., Shahar, M., Vald, M.: Privacy-preserving decision trees training and prediction. ACM Trans. Privacy Secur. 25(3), 1–30 (2022)

    Article  Google Scholar 

  3. Akhavan Mahdavi, R., Ni, H., Linkov, D., Kerschbaum, F.: Level up: Private non-interactive decision tree evaluation using levelled homomorphic encryption. In: Proc. 2023 ACM SIGSAC Conference on Computer and Communications Security (CCS’23), pp. 2945–2958 (2023)

    Google Scholar 

  4. De Cock, M., et al.: Efficient and private scoring of decision trees, support vector machines and logistic regression models based on pre-computation. IEEE Trans. Dependable Secure Comput. 16(2), 217–230 (2017)

    Google Scholar 

  5. Azogagh, S., Delfour, V., Gambs, S., Killijian, M.O.: Probonite: private one-branch-only non-interactive decision tree evaluation. In: Proc. 10th Workshop on Encrypted Computing & Applied Homomorphic Cryptography (WAHC’22), pp. 23–33. ACM (2022). https://doi.org/10.1145/3560827.3563377

  6. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.: Secure evaluation of private linear branching programs with medical applications. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1_26

    Chapter  Google Scholar 

  7. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: NDSS Symposium 2015, p. 04_1_2. Internet Society (2015)

    Google Scholar 

  8. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees belmont. Wadsworth International Group, CA (1984)

    Google Scholar 

  9. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: Proceedings of the 14th ACM Conference on Computer and communications Security, pp. 498–507 (2007)

    Google Scholar 

  10. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of approximate homomorphic encryption. In: International Conference on Selected Areas in Cryptography, pp. 347–368. Springer (2018)

    Google Scholar 

  11. Cheon, J.H., Hong, S., Kim, D.: Remark on the security of ckks scheme in practice. Cryptology ePrint Archive (2020)

    Google Scholar 

  12. Cheon, J.H., Kim, D., Kim, D.: Efficient homomorphic comparison methods with optimal complexity. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 221–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_8

    Chapter  Google Scholar 

  13. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  14. Chicco, D., Jurman, G.: Sepsis Survival Minimal Clinical Records. UCI Machine Learning Repository (2023). https://doi.org/10.24432/C53C8N

  15. Cong, K., Das, D., Park, J., Pereira, H.V.: Sortinghat: efficient private decision tree evaluation via homomorphic encryption and transciphering. In: Proc. 2022 ACM CCS, pp. 563–577 (2022)

    Google Scholar 

  16. CryptoLab: HEAAN library (2022). https://heaan.it/

  17. de Hoogh, S., Schoenmakers, B., Chen, P., op den Akker, H.: Practical secure decision tree learning in a teletreatment application. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 179–194. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_12

    Chapter  Google Scholar 

  18. Du, W., Zhan, Z.: Building decision tree classifier on private data. In: Proceedings of the IEEE international conference on Privacy, security and data mining-Volume 14. pp. 1–8 (2002)

    Google Scholar 

  19. Emekçi, F., Sahin, O.D., Agrawal, D., El Abbadi, A.: Privacy preserving decision tree learning over multiple parties. Data Knowl. Eng. 63(2), 348–361 (2007)

    Article  Google Scholar 

  20. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 364–390. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_16

    Chapter  Google Scholar 

  21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer (2009)

    Google Scholar 

  22. Joye, M., Salehi, F.: Private yet efficient decision tree evaluation. In: Kerschbaum, F., Paraboschi, S. (eds.) DBSec 2018. LNCS, vol. 10980, pp. 243–259. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95729-6_16

    Chapter  Google Scholar 

  23. Jung, W., Kim, S., Ahn, J.H., Cheon, J.H., Lee, Y.: Over 100x faster bootstrapping in fully homomorphic encryption through memory-centric optimization with gpus. IACR Trans. Cryptographic Hardware Embedded Syst., 114–148 (2021)

    Google Scholar 

  24. Kiss, Á., Naderpour, M., Liu, J., Asokan, N., Schneider, T.: Sok: modular and efficient private decision tree evaluation. Proceedings on Privacy Enhancing Technologies 2019(2), 187–208 (2019)

    Article  Google Scholar 

  25. Lee, D., Choi, J., Kim, K., Lee, Y.: Heaan-id3: Fully homomorphic privacy-preserving id3-decision trees using ckks. In submission (2023)

    Google Scholar 

  26. Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: High-precision bootstrapping of rns-ckks homomorphic encryption using optimal minimax polynomial approximation and inverse sine function. In: Proc. Eurocrypt 2021, pp. 618–647 (2021)

    Google Scholar 

  27. Lee, Y., Seo, J., Nam, Y., Chae, J., Cheon, J.H.: Heaan-stat: a privacy-preserving statistical analysis toolkit for large-scale numerical, ordinal, and categorical data. IEEE Trans. Dependable Secure Comput. (2023). https://doi.org/10.1109/TDSC.2023.3275649

    Article  Google Scholar 

  28. Li, B., Micciancio, D.: On the security of homomorphic encryption on approximate numbers. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 648–677. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_23

    Chapter  Google Scholar 

  29. Li, Y., Jiang, Z.L., Wang, X., Yiu, S.: Privacy-preserving id3 data mining over encrypted data in outsourced environments with multiple keys. In: IEEE Intl. Conf. on CSE and EUC, vol. 1, pp. 548–555 (2017)

    Google Scholar 

  30. Liang, J., Qin, Z., Xue, L., Lin, X., Shen, X.: Efficient and privacy-preserving decision tree classification for health monitoring systems. IEEE Internet Things J. 8(16), 12528–12539 (2021)

    Article  Google Scholar 

  31. Liu, L., Chen, R., Liu, X., Su, J., Qiao, L.: Towards practical privacy-preserving decision tree training and evaluation in the cloud. IEEE Trans. Inf. Forensics Secur. 15, 2914–2929 (2020)

    Article  Google Scholar 

  32. Lu, W.j., Huang, Z., Zhang, Q., Wang, Y., Hong, C.: Squirrel: a scalable secure \(\{\)Two-Party\(\}\) computation framework for training gradient boosting decision tree. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 6435–6451 (2023)

    Google Scholar 

  33. Lu, W.j., Zhou, J.J., Sakuma, J.: Non-interactive and output expressive private comparison from homomorphic encryption. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 67–74 (2018)

    Google Scholar 

  34. Markelle Kelly, Rachel Longjohn, K.N.: The uci machine learning repository (2023), https://archive.ics.uci.edu

  35. Scott, D.W.: On optimal and data-based histograms. Biometrika 66(3), 605–610 (1979)

    Article  MathSciNet  Google Scholar 

  36. Shin, H., Choi, J., Lee, D., Kim, K., Lee, Y.: Fully homomorphic training and inference on binary decision tree and random forest. Cryptology ePrint Archive, Paper 2024/529 (2024), https://eprint.iacr.org/2024/529, https://eprint.iacr.org/2024/529

  37. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees evaluation via linear functions. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 494–512. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_27

    Chapter  Google Scholar 

  38. Tueno, A., Boev, Y., Kerschbaum, F.: Non-interactive private decision tree evaluation. In: Data and Applications Security and Privacy XXXIV: 34th Annual IFIP WG 11.3 Conference, DBSec 2020, Regensburg, Germany, June 25–26, 2020, Proceedings 34. pp. 174–194. Springer (2020)

    Google Scholar 

  39. Tueno, A., Kerschbaum, F., Katzenbeisser, S.: Private evaluation of decision trees using sublinear cost. Proce. Privacy Enhancing Technol. 2019(1), 266–286 (2019)

    Article  Google Scholar 

  40. Vaidya, J., Kantarcıoğlu, M., Clifton, C.: Privacy-preserving naive bayes classification. VLDB J. 17(4), 879–898 (2008)

    Article  Google Scholar 

  41. Wang, K., Xu, Y., She, R., Yu, P.S.: Classification spanning private databases. In: Proceedings of the National Conference on Artificial Intelligence, vol. 21, p. 293. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2006)

    Google Scholar 

  42. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees and random forests. Proceedings on Privacy Enhancing Technologies 4, 335–355 (2016)

    Article  Google Scholar 

  43. Zheng, W., Deng, R., Chen, W., Popa, R.A., Panda, A., Stoica, I.: Cerebro: A platform for \(\{\)Multi-Party\(\}\) cryptographic collaborative learning. In: 30th USENIX Security Symposium (USENIX Security 21), pp. 2723–2740 (2021)

    Google Scholar 

  44. Zheng, Y., Duan, H., Wang, C., Wang, R., Nepal, S.: Securely and efficiently outsourcing decision tree inference. IEEE Trans. Dependable Secure Comput. 19(3), 1841–1855 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younho Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shin, H., Choi, J., Lee, D., Kim, K., Lee, Y. (2024). Fully Homomorphic Training and Inference on Binary Decision Tree and Random Forest. In: Garcia-Alfaro, J., Kozik, R., Choraś, M., Katsikas, S. (eds) Computer Security – ESORICS 2024. ESORICS 2024. Lecture Notes in Computer Science, vol 14984. Springer, Cham. https://doi.org/10.1007/978-3-031-70896-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70896-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70895-4

  • Online ISBN: 978-3-031-70896-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics