Abstract
Generative AI models can produce high-quality images based on text prompts. The generated images often appear indistinguishable from images generated by conventional optical photography devices or created by human artists (i.e., real images). While the outstanding performance of such generative models is generally well received, security concerns arise. For instance, such image generators could be used to facilitate fraud or scam schemes, generate and spread misinformation, or produce fabricated artworks. In this paper, we present a systematic attempt at understanding and detecting AI-generated images (AI-art) in adversarial scenarios. First, we collect and share a dataset of real images and their corresponding artificial counterparts generated by four popular AI image generators. The dataset, named ARIA, contains over 140K images in five categories: artworks (painting), social media images, news photos, disaster scenes, and anime pictures. This dataset can be used as a foundation to support future research on adversarial AI-art. Next, we present a user study that employs the ARIA dataset to evaluate if real-world users can distinguish with or without reference images. In a benchmarking study, we further evaluate if state-of-the-art open-source and commercial AI image detectors can effectively identify the images in the ARIA dataset. Finally, we present a ResNet-50 classifier and evaluate its accuracy and transferability on the ARIA dataset. The ARIA dataset and the project source code are shared at: https://github.com/AdvAIArtProject/AdvAIArt.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
10 midjourney statistics demonstrating why its better than other AI art generators. Skim AI (2024)
Risk in focus: Generative A.I. and the 2024 election cycle. CISA (2024)
Agarwal, A., Singh, R., Vatsa, M., Noore, A.: Swapped! digital face presentation attack detection via weighted local magnitude pattern. In: IEEE IJCB (2017)
Akhtar, Z., Dasgupta, D.: A comparative evaluation of local feature descriptors for deepfakes detection. In: IEEE HST (2019)
billywzh717: N24news. https://github.com/billywzh717/N24News (2022)
Bird, J.J., Lotfi, A.: CIFAKE: image classification and explainable identification of AI-generated synthetic images. IEEE Access 12, 15642–15650 (2024)
Bray, S.D., Johnson, S.D., Kleinberg, B.: Testing human ability to detect ‘deepfake’ images of human faces. J. Cybersecur. 9(1), tyad011 (2023)
Chan, K., Swenson, A.: One Tech Tip: How to Spot AI-Generated Deepfake Images. The Associated Press, New York (2024)
Chen, M., Tworek, J., et al.: Evaluating large language models trained on code. arXiv:2107.03374 (2021)
Cho, W.: AI companies take hit as judge says artists have ‘public interest’ in pursuing lawsuits. ARTnews (2024)
Croitoru, F.A., Hondru, V., Ionescu, R.T., Shah, M.: Diffusion models in vision: a survey. In: IEEE TPAMI (2023)
Data, E.D.I.: Case 1739 AI-generated image showing accident between GMC hummer EV and tesla cybertruck has gone viral with false claims. D-Intent Data (2024)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, IEEE (2009)
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: NeurIPS (2021)
Draganovic, A., Dambra, S., Iuit, J.A., Roundy, K., Apruzzese, G.: “Do users fall for real adversarial phishing?” investigating the human response to evasive webpages. In: APWG eCrime (2023)
Duffy, C.: Top AI photo generators produce misleading election-related images, study finds. In: CNN (2024)
Edwards, B.: Flooded with AI-generated images, some art communities ban them completely. In: arstechnica (2022)
Epstein, Z., Levine, S., Rand, D.G., Rahwan, I.: Who gets credit for AI-generated art? Iscience 23(9), 101515 (2020)
Evan, S.: Pixiv top daily illustration 2018. Kaggle. https://www.kaggle.com/datasets/stevenevan99/pixiv-top-daily-illustration-2018 (2019)
Fake image detector: fake image detector. https://www.fakeimagedetector.com/contact-us/ (2024)
Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)
Gragnaniello, D., Cozzolino, D., Marra, F., Poggi, G., Verdoliva, L.: Are GAN generated images easy to detect? a critical analysis of the state-of-the-art. In: IEEE ICME (2021)
Ha, A.Y.J., et al.: Organic or diffused: can we distinguish human art from AI-generated images? arXiv:2402.03214 (2024)
Hassan Hicham ElNahrawy: AI or not. https://huggingface.co/Nahrawy/AIorNot/ (2023)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
He, Y., Yu, N., Keuper, M., Fritz, M.: Beyond the spectrum: Detecting deepfakes via re-synthesis. arXiv:2105.14376 (2021)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)
Hong, Y., Zhang, J.: Wildfake: a large-scale challenging dataset for AI-generated images detection. arXiv:2402.11843 (2024)
Icaro: Best artworks of all time. Kaggle. https://www.kaggle.com/datasets/ikarus777/best-artworks-of-all-time (2023)
isitai.com: Is it AI? https://isitai.com/ (2024)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)
Katatikarn, J.: AI art statistics: the ultimate list in 2024. In: Academy Of Animated Art (2024)
Kavafian, H.: How to identify AI-generated images (2023)
KI-Tech Hertig: Illuminarty. https://illuminarty.ai/ (2024)
Korshunov, P., Marcel, S.: Deepfakes: a new threat to face recognition? assessment and detection. arXiv:1812.08685 (2018)
koushikvikram: Multimodal image retrieval. Github. https://github.com/koushikvikram/multimodal-image-retrieval (2021)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Lei, J., Tang, J., Jia, K.: Rgbd2: Generative scene synthesis via incremental view inpainting using RGBD diffusion models. In: CVPR (2023)
Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. arXiv:1811.00656 (2018)
Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a large-scale challenging dataset for deepfake forensics. In: CVPR (2020)
Lin, T.Y., et al.: Microsoft coco: common objects in context. In: ECCV (2014)
Liu, Z., Yao, Z., Li, F., Luo, B.: On the detectability of chatgpt content: benchmarking, methodology, and evaluation through the lens of academic writing. arXiv:2306.05524 (2023)
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: CVPR (2022)
Lu, Z., et al.: Seeing is not always believing: Benchmarking human and model perception of AI-generated images. In: NeurIPS (2024)
Matthew Maybe: Ai image detector. https://huggingface.co/umm-maybe/AI-image-detector/ (2022)
Matusevski, A.: Instagram images - 1,211,625 posts. Kaggle. https://www.kaggle.com/datasets/shmalex/instagram-images (2022)
Midjourney: Can i use my images commercially? MidJourney. https://help.midjourney.com/en/articles/8150363-can-i-use-my-images-commercially (2024)
Midjourney: Midjourney home. https://www.midjourney.com/home (2024)
Mirza, R.: How AI deepfakes threaten the 2024 elections. J. Resour. (2023)
Mo, H., Chen, B., Luo, W.: Fake faces identification via convolutional neural network. In: ACM workshop on information hiding and multimedia security (2018)
Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: ICML (2021)
Office, U.S.C.: Usco letter on AI and copyright initiative update (2024)
Ojha, U., Li, Y., Lee, Y.J.: Towards universal fake image detectors that generalize across generative models. In: CVPR (2023)
OpenAI: Can i sell images i create with dall\(\cdot \)e? OpenAI Documentation (2024)
OpenAI: Dall\(\cdot \)e: Creating images from text. https://openai.com/research/dall-e (2024)
Organika.ai: Sdxl detector. https://huggingface.co/Organika/sdxl-detector/ (2024)
Pashankar, S.: Scammers litter dating apps with AI-generated profile pics. Bloomberg (2024)
Rabiner, L., Juang, B.: An introduction to hidden markov models. IEEE ASSP Mag. 3(1), 4–16 (1986)
Radford, A., Kim, J.W., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)
Rae, J.W., Borgeaud, S., et al.: Scaling language models: methods, analysis & insights from training gopher. arXiv:2112.11446 (2021)
Rahman, M.A., Paul, B., Sarker, N.H., Hakim, Z.I.A., Fattah, S.A.: Artifact: a large-scale dataset with artificial and factual images for generalizable and robust synthetic image detection. In: IEEE ICIP (2023)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv:2204.06125 (2022)
Reidy, M., Mallon, H., Luo, J.: Investigating the effectiveness of deep learning and CFA interpolation based classifiers on identifying AIGC. In: IEEE BigData (2023)
Reynolds, D.A., et al.: Gaussian mixture models. Encyclopedia Biometrics 741(659-663) (2009)
Roose, K.: An AI-generated picture won an art prize. artists aren’t happy (2022)
Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Faceforensics++: learning to detect manipulated facial images. In: ICCV (2019)
Rudolf Kenechukwu Enyimba: Deepfake image detection (CNN). https://huggingface.co/spaces/Wvolf/CNN_Deepfake_Image_Detection/ (2024)
Sganga, N.: Is that Facebook account real? meta reports ‘rapid rise’ in AI-generated profile pictures. CBS News (2022)
Sha, Z., Li, Z., Yu, N., Zhang, Y.: De-fake: detection and attribution of fake images generated by text-to-image generation models. In: ACM CCS (2023)
Sightengine: sightengine. https://sightengine.com/ (2024)
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML (2015)
Song, Y., Durkan, C., Murray, I., Ermon, S.: Maximum likelihood training of score-based diffusion models. In: NeurIPS (2021)
Song, Y., Ermon, S.: Improved techniques for training score-based generative models. In: NeurIPS (2020)
Stability AI Ltd: Dreamstudio. https://dreamstudio.com/about/ (2024)
StarryAI: Starryai home. https://starryai.com/ (2024)
Steele, C.: How to detect AI-generated images (2024)
Straub, J.: Using subject face brightness assessment to detect ‘deep fakes’ (conference presentation). In: Real-Time Image Processing and Deep Learning, vol. 10996, p. 109960H. SPIE (2019)
Telperion: Diasterdatasetraw. Kaggle. https://www.kaggle.com/datasets/telperion/diasterdatasetraw (2022)
Thompson, S.A.: We asked A.I. to create the joker. it generated a copyrighted image. (2024)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
Verma, P.: The rise of AI fake news is creating a ‘misinformation superspreader’. The Washington Post (2023)
Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: CNN-generated images are surprisingly easy to spot... for now. In: CVPR (2020)
Wang, Y., Huang, Z., Hong, X.: Benchmarking deepart detection. arXiv:2302.14475 (2023)
Wang, Z., Shan, X., Zhang, X., Yang, J.: N24news: a new dataset for multimodal news classification. In: LREC (2022)
Wang, Z., et al.: Dire for diffusion-generated image detection. In: ICCV (2023)
Wang, Z., Montoya, E., Munechka, D., Yang, H., Hoover, B., Chau, P.: Diffusiondb: a large-scale prompt gallery dataset for text-to-image generative models. In: ACL (2023)
Wei, Y., Tyson, G.: Understanding the impact of AI generated content on social media: The pixiv case (2024)
Wendling, M.: Ai can be easily used to make fake election photos. In: BBC (2024)
Wong, C.: Ai-generated images and video are here: how could they shape research? Nature (2024)
Workado LLC: Content at scale. https://contentatscale.ai/ (2024)
World Economic Forum: Global risks report 2024 (2024)
Writer, A.R.: 9 simple ways to detect AI images (with examples) in 2024 (2024)
Wu, J., Gan, W., Chen, Z., Wan, S., Lin, H.: Ai-generated content (AIGC): a survey. arXiv:2304.06632 (2023)
Xi, Z., Huang, W., Wei, K., Luo, W., Zheng, P.: Ai-generated image detection using a cross-attention enhanced dual-stream network. In: APSIPA ASC (2023)
Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., Zhang, W., Cui, B., Yang, M.H.: Diffusion models: a comprehensive survey of methods and applications. ACM Comput. Surv. 56(4), 1–39 (2023)
Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv:1506.03365 (2015)
Yuan, Y., Hao, Q., Apruzzese, G., Conti, M., Wang, G.: Are adversarial phishing webpages a threat in reality? understanding the users’ perception of adversarial webpages. In: Web Conference (2024)
Zhang, Y., Zheng, L., Thing, V.L.: Automated face swapping and its detection. In: IEEE ICSIP (2017)
Zhu, M., et al.: Genimage: a million-scale benchmark for detecting AI-generated image. In: NeurIPS (2024)
Acknowledgments
This paper was supported in part by US National Science Foundation (NSF) grants IIS-2014552, DGE-1565570, CNS-2204785, CNS-2205868, SCC-2238208 and the Ripple University Blockchain Research Initiative. We thank the anonymous reviewers for their valuable comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Y. et al. (2024). The Adversarial AI-Art: Understanding, Generation, Detection, and Benchmarking. In: Garcia-Alfaro, J., Kozik, R., Choraś, M., Katsikas, S. (eds) Computer Security – ESORICS 2024. ESORICS 2024. Lecture Notes in Computer Science, vol 14982. Springer, Cham. https://doi.org/10.1007/978-3-031-70879-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-70879-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70878-7
Online ISBN: 978-3-031-70879-4
eBook Packages: Computer ScienceComputer Science (R0)