[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Radical Similarity Based Model Optimization and Post-correction for Chinese Character Recognition

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2024 (ICDAR 2024)

Abstract

Radical-based methods for Chinese character recognition (CCR) have been proven effective and offer substantial advantages. Different from character-based methods, Chinese characters are described as combinations of structures and radicals, and character recognition is achieved by the proper identifications of these components. However, there are visual similarities among radicals, leading to the ambiguity problem for CCR, which is not fully utilized in previous work. Accordingly, in this study, we first employ the stroke order information of Chinese radicals to establish a radical similarity metric. Then we improve the radical-based CCR in two ways. During the training stage, we propose a new loss function called minimum Bayesian risk (MBR) based on the radical similarity metric to yield better performance. During the recognition stage, the radical similarity is adopted to post-correct the potential error recognition results, offering a low-cost yet effective solution. Experimental results on different radical-based CCR models and datasets demonstrate the effectiveness and robustness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bickel, P.J., Doksum, K.A.: Mathematical statistics: basic ideas and selected topics, volumes I-II package. CRC Press (2015)

    Google Scholar 

  2. Cao, Z., Lu, J., Cui, S., Zhang, C.: Zero-shot handwritten Chinese character recognition with hierarchical decomposition embedding. Pattern Recogn. 107, 107488 (2020)

    Article  Google Scholar 

  3. Casey, R., Nagy, G.: Recognition of printed Chinese characters. IEEE Trans. Electron. Comput. 1, 91–101 (1966)

    Article  Google Scholar 

  4. Chen, J., Li, B., Xue, X.: Zero-shot Chinese character recognition with stroke-level decomposition (2021). arXiv preprint arXiv:2106.11613

  5. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134, 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  6. Freitag, M., Grangier, D., Tan, Q., Liang, B.: High quality rather than high model probability: minimum bayes risk decoding with neural metrics. Trans. Assoc. Comput. Linguist. 10, 811–825 (2022)

    Article  Google Scholar 

  7. Goel, V., Byrne, W.J.: Minimum bayes-risk automatic speech recognition. Comput. Speech Lang. 14(2), 115–135 (2000)

    Article  Google Scholar 

  8. Goodman, J.: Parsing algorithms and metrics (1996). arXiv preprint cmp-lg/9605036

    Google Scholar 

  9. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: DenseNet: Implementing efficient convnet descriptor pyramids (2014). arXiv preprint arXiv:1404.1869

  10. Jiang, X., et al.: Group, contrast and recognize: a self-supervised method for chinese character recognition. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds.) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. LNCS, vol. 14190. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41685-9_26

  11. Jin, L.W., Yin, J.X., Gao, X., Huang, J.C.: Study of several directional feature extraction methods with local elastic meshing technology for HCCR. In: Proceedings of the Sixth International Conference for Young Computer Scientist, pp. 232–236 (2001)

    Google Scholar 

  12. Kaiser, J., Horvat, B., Kacic, Z.: A novel loss function for the overall risk criterion based discriminative training of hmm models. In: INTERSPEECH, pp. 887–890 (2000)

    Google Scholar 

  13. Kingsbury, B.: Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3761–3764. IEEE (2009)

    Google Scholar 

  14. Kumar, S., Byrne, B.: Minimum bayes-risk word alignments of bilingual texts. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), pp. 140–147 (2002)

    Google Scholar 

  15. Kumar, S., Byrne, B.: Minimum bayes-risk decoding for statistical machine translation. In: Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004, pp. 169–176 (2004)

    Google Scholar 

  16. Liu, C.L., Yin, F., Wang, D.H., Wang, Q.F.: Online and offline handwritten Chinese character recognition: benchmarking on new databases. Pattern Recogn. 46(1), 155–162 (2013)

    Article  Google Scholar 

  17. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  18. Morioka, T.: Integration of a Chinese character ontology and historical glyph examples. In: Proceedings of the 9th International Conference of Digital Archives and Digital Humanities (DADH2018), pp. 287–300. Organizer of 9th International Conference of Digital Archives and Digital (2018)

    Google Scholar 

  19. Ristad, E.S., Yianilos, P.N.: Learning string-edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 522–532 (1998)

    Article  Google Scholar 

  20. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: International Conference on Machine Learning, pp. 2152–2161. PMLR (2015)

    Google Scholar 

  21. Su, Y.M., Wang, J.F.: A novel stroke extraction method for Chinese characters using Gabor filters. Pattern Recogn. 36(3), 635–647 (2003)

    Article  MathSciNet  Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  23. Wang, T., Xie, Z., Li, Z., Jin, L., Chen, X.: Radical aggregation network for few-shot offline handwritten Chinese character recognition. Pattern Recogn. Lett. 125, 821–827 (2019)

    Article  Google Scholar 

  24. Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings, methods, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–37 (2019)

    Google Scholar 

  25. Wang, W., Zhang, J., Du, J., Wang, Z.R., Zhu, Y.: DenseRAN for offline handwritten Chinese character recognition. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 104–109. IEEE (2018)

    Google Scholar 

  26. Xiao, Y., Meng, D., Lu, C., Tang, C.K.: Template-instance loss for offline handwritten Chinese character recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 315–322. IEEE (2019)

    Google Scholar 

  27. Xue, M., Du, J., Zhang, J., Wang, Z.-R., Wang, B., Ren, B.: Radical composition network for Chinese character generation. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 252–267. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_17

    Chapter  Google Scholar 

  28. Yang, C., Wang, Q., Du, J., Zhang, J., Wu, C., Wang, J.: A transformer-based radical analysis network for Chinese character recognition. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 3714–3719. IEEE (2021)

    Google Scholar 

  29. Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3474–3482 (2018)

    Google Scholar 

  30. Yin, F., Wang, Q.F., Zhang, X.Y., Liu, C.L.: ICDAR 2013 Chinese handwriting recognition competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1464–1470. IEEE (2013)

    Google Scholar 

  31. Yujian, L., Bo, L.: A normalized Levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1091–1095 (2007)

    Article  Google Scholar 

  32. Zeiler, M.D.: ADADELTA: an adaptive learning rate method (2012). arXiv preprint arXiv:1212.5701

  33. Zeng, J., Xu, R., Wu, Y., Li, H., Lu, J.: STAR: Zero-shot Chinese character recognition with stroke-and radical-level decompositions (2022). arXiv preprint arXiv:2210.08490

  34. Zhang, J., Du, J., Dai, L.: Radical analysis network for learning hierarchies of Chinese characters. Pattern Recogn. 103, 107305 (2020)

    Article  Google Scholar 

  35. Zhang, X.Y., Bengio, Y., Liu, C.L.: Online and offline handwritten Chinese character recognition: a comprehensive study and new benchmark. Pattern Recogn. 61, 348–360 (2017)

    Article  Google Scholar 

  36. Zhong, Z., Jin, L., Xie, Z.: High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 846–850. IEEE (2015)

    Google Scholar 

  37. Zu, X., Yu, H., Li, B., Xue, X.: Chinese character recognition with augmented character profile matching. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 6094–6102 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Z., Du, J., Xue, M., Ma, J., Hu, P., Zhang, Z. (2024). Radical Similarity Based Model Optimization and Post-correction for Chinese Character Recognition. In: Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024. ICDAR 2024. Lecture Notes in Computer Science, vol 14804. Springer, Cham. https://doi.org/10.1007/978-3-031-70533-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70533-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70532-8

  • Online ISBN: 978-3-031-70533-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics