[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

CUQ-GNN: Committee-Based Graph Uncertainty Quantification Using Posterior Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14948))

Abstract

In this work, we study the influence of domain-specific characteristics when defining a meaningful notion of predictive uncertainty on graph data. Previously, the so-called Graph Posterior Network (GPN) model has been proposed to quantify uncertainty in node classification tasks. Given a graph, it uses Normalizing Flows (NFs) to estimate class densities for each node independently and converts those densities into Dirichlet pseudo-counts, which are then dispersed through the graph using the personalized Page-Rank (PPR) algorithm. The architecture of GPNs is motivated by a set of three axioms on the properties of its uncertainty estimates. We show that those axioms are not always satisfied in practice and therefore propose the family of Committe-based Uncertainty Quantification Graph Neural Networks (CUQ-GNNs), which combine standard Graph Neural Networks (GNNs) with the NF-based uncertainty estimation of Posterior Networks (PostNets). This approach adapts more flexibly to domain-specific demands on the properties of uncertainty estimates. We compare CUQ-GNN against GPN and other uncertainty quantification approaches on common node classification benchmarks and show that it is effective at producing useful uncertainty estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Implementation available at https://github.com/Cortys/gpn-extensions.

References

  1. Abbas, A.E.: A Kullback-Leibler view of linear and log-linear pools. Decis. Anal. 6(1), 25–37 (2009)

    Article  Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  3. Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)

    Google Scholar 

  4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bengs, V., Hüllermeier, E., Waegeman, W.: Pitfalls of epistemic uncertainty quantification through loss minimisation. In: NeurIPS, vol. 35, pp. 29205–29216 (2022)

    Google Scholar 

  6. Bengs, V., Hüllermeier, E., Waegeman, W.: On second-order scoring rules for epistemic uncertainty quantification. In: ICML, pp. 2078–2091. PMLR (2023)

    Google Scholar 

  7. Biloš, M., Charpentier, B., Günnemann, S.: Uncertainty on asynchronous time event prediction. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  8. Bojchevski, A., Günnemann, S.: Deep Gaussian embedding of graphs: unsupervised inductive learning via ranking. In: ICLR (2018)

    Google Scholar 

  9. Bronevich, A., Klir, G.J.: Axioms for uncertainty measures on belief functions and credal sets. In: NAFIPS 2008, pp. 1–6 (2008)

    Google Scholar 

  10. Charpentier, B., Zügner, D., Günnemann, S.: Posterior network: uncertainty estimation without OOD samples via density-based pseudo-counts. In: NeurIPS (2020)

    Google Scholar 

  11. Clemen, R.T., Winkler, R.L.: Combining probability distributions from experts in risk analysis. Risk Anal. 19(2), 187–203 (1999)

    Article  Google Scholar 

  12. Clemen, R.T., Winkler, R.L.: Aggregating probability distributions. In: Advances in Decision Analysis: From Foundations to Applications, pp. 154–176 (2007)

    Google Scholar 

  13. Damke, C., Hüllermeier, E.: Linear opinion pooling for uncertainty quantification on graphs. In: UAI 2024, Barcelona (2024)

    Google Scholar 

  14. Damke, C., Melnikov, V., Hüllermeier, E.: A novel higher-order Weisfeiler-Lehman graph convolution. In: ACML, pp. 49–64. PMLR (2020)

    Google Scholar 

  15. Depeweg, S., Hernandez-Lobato, J.M., Doshi-Velez, F., Udluft, S.: Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In: ICML, pp. 1184–1193. PMLR (2018)

    Google Scholar 

  16. Duan, R., Caffo, B., Bai, H.X., Sair, H.I., Jones, C.: Evidential uncertainty quantification: a variance-based perspective. In: WACV (2024)

    Google Scholar 

  17. Gasteiger, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks meet personalized pagerank. In: ICLR (2018)

    Google Scholar 

  18. Genest, C.: A characterization theorem for externally Bayesian groups. Ann. Stat. 12(3), 1100–1105 (1984)

    Article  MathSciNet  Google Scholar 

  19. Genest, C., Zidek, J.V.: Combining probability distributions: a critique and an annotated bibliography. Stat. Sci. 1(1), 114–135 (1986)

    MathSciNet  Google Scholar 

  20. Getoor, L.: Link-based classification. In: Getoor, L. (ed.) Advanced Methods for Knowledge Discovery from Complex Data. AIKP, pp. 189–207. Springer, London (2005). https://doi.org/10.1007/1-84628-284-5_7

    Chapter  Google Scholar 

  21. Giles, C.L., Bollacker, K.D., Lawrence, S.: CiteSeer: an automatic citation indexing system. In: Third ACM Conference on Digital Libraries, pp. 89–98 (1998)

    Google Scholar 

  22. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. In: NeurIPS, vol. 33, pp. 22118–22133 (2020)

    Google Scholar 

  23. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110(3) (2021)

    Google Scholar 

  24. Huseljic, D., Sick, B., Herde, M., Kottke, D.: Separation of aleatoric and epistemic uncertainty in deterministic deep neural networks. In: ICPR 2020 (2021)

    Google Scholar 

  25. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NeurIPS, pp. 5580–5590. Curran Associates Inc. (2017)

    Google Scholar 

  26. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  27. Koliander, G., El-Laham, Y., Djurić, P.M., Hlawatsch, F.: Fusion of probability density functions. Proc. IEEE 110(4), 404–453 (2022)

    Article  Google Scholar 

  28. Kopetzki, A.K., Charpentier, B., Zügner, D., Giri, S., Günnemann, S.: Evaluating robustness of predictive uncertainty estimation: are Dirichlet-based models reliable? In: ICML, pp. 5707–5718. PMLR (2021)

    Google Scholar 

  29. Kotelevskii, N., Horváth, S., Nandakumar, K., Takáč, M., Panov, M.: Dirichlet-Based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks (2023)

    Google Scholar 

  30. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: NeurIPS, pp. 7047–7058. Curran Associates Inc. (2018)

    Google Scholar 

  31. Maron, H., Ben-Hamu, H., Serviansky, H., Lipman, Y.: Provably powerful graph networks. arXiv (2019)

    Google Scholar 

  32. McAuley, J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–52 (2015)

    Google Scholar 

  33. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retrieval 3(2) (2000)

    Google Scholar 

  34. Namata, G., London, B., Getoor, L., Huang, B.: Query-driven active surveying for collective classification. In: MLG Workshop (2012)

    Google Scholar 

  35. Pal, N.R., Bezdek, J.C., Hemasinha, R.: Uncertainty measures for evidential reasoning II: a new measure of total uncertainty. IJAR 8(1), 1–16 (1993)

    MathSciNet  Google Scholar 

  36. Redner, S.: How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4(2), 131–134 (1998)

    Article  Google Scholar 

  37. Sale, Y., Hofman, P., Wimmer, L., Hüllermeier, E., Nagler, T.: Second-Order Uncertainty Quantification: Variance-Based Measures (2023)

    Google Scholar 

  38. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93 (2008)

    Google Scholar 

  39. Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. In: NeurIPS, pp. 3183–3193. Curran Associates Inc. (2018)

    Google Scholar 

  40. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. SIGKDD Explor. Newsl. 19(1), 22–36 (2017)

    Article  Google Scholar 

  41. Stadler, M., Charpentier, B., Geisler, S., Zügner, D., Günnemann, S.: Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (2021)

    Google Scholar 

  42. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  43. Wang, M., Yu, G., Yu, D.: Measuring the preferential attachment mechanism in citation networks. Physica A: Stat Mech. Appl. 387(18) (2008)

    Google Scholar 

  44. Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference, pp. 2022–2032 (2019)

    Google Scholar 

  45. Wimmer, L., Sale, Y., Hofman, P., Bischl, B., Hüllermeier, E.: Quantifying aleatoric and epistemic uncertainty in machine learning: are conditional entropy and mutual information appropriate measures? In: UAI 2023, pp. 2282–2292. PMLR (2023)

    Google Scholar 

  46. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2018)

    Google Scholar 

  47. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 793–803 (2019)

    Google Scholar 

  48. Zhao, X., Chen, F., Hu, S., Cho, J.H.: Uncertainty aware semi-supervised learning on graph data. In: NeurIPS, pp. 12827–12836. Curran Associates Inc. (2020)

    Google Scholar 

  49. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily in graph neural networks: current limitations and effective designs. In: NeurIPS, pp. 7793–7804. Curran Associates Inc. (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Damke .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Damke, C., Hüllermeier, E. (2024). CUQ-GNN: Committee-Based Graph Uncertainty Quantification Using Posterior Networks. In: Bifet, A., et al. Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14948. Springer, Cham. https://doi.org/10.1007/978-3-031-70371-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70371-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70370-6

  • Online ISBN: 978-3-031-70371-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics