Abstract
In this work, we study the influence of domain-specific characteristics when defining a meaningful notion of predictive uncertainty on graph data. Previously, the so-called Graph Posterior Network (GPN) model has been proposed to quantify uncertainty in node classification tasks. Given a graph, it uses Normalizing Flows (NFs) to estimate class densities for each node independently and converts those densities into Dirichlet pseudo-counts, which are then dispersed through the graph using the personalized Page-Rank (PPR) algorithm. The architecture of GPNs is motivated by a set of three axioms on the properties of its uncertainty estimates. We show that those axioms are not always satisfied in practice and therefore propose the family of Committe-based Uncertainty Quantification Graph Neural Networks (CUQ-GNNs), which combine standard Graph Neural Networks (GNNs) with the NF-based uncertainty estimation of Posterior Networks (PostNets). This approach adapts more flexibly to domain-specific demands on the properties of uncertainty estimates. We compare CUQ-GNN against GPN and other uncertainty quantification approaches on common node classification benchmarks and show that it is effective at producing useful uncertainty estimates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Implementation available at https://github.com/Cortys/gpn-extensions.
References
Abbas, A.E.: A Kullback-Leibler view of linear and log-linear pools. Decis. Anal. 6(1), 25–37 (2009)
Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)
Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Bengs, V., Hüllermeier, E., Waegeman, W.: Pitfalls of epistemic uncertainty quantification through loss minimisation. In: NeurIPS, vol. 35, pp. 29205–29216 (2022)
Bengs, V., Hüllermeier, E., Waegeman, W.: On second-order scoring rules for epistemic uncertainty quantification. In: ICML, pp. 2078–2091. PMLR (2023)
Biloš, M., Charpentier, B., Günnemann, S.: Uncertainty on asynchronous time event prediction. In: NeurIPS, vol. 32 (2019)
Bojchevski, A., Günnemann, S.: Deep Gaussian embedding of graphs: unsupervised inductive learning via ranking. In: ICLR (2018)
Bronevich, A., Klir, G.J.: Axioms for uncertainty measures on belief functions and credal sets. In: NAFIPS 2008, pp. 1–6 (2008)
Charpentier, B., Zügner, D., Günnemann, S.: Posterior network: uncertainty estimation without OOD samples via density-based pseudo-counts. In: NeurIPS (2020)
Clemen, R.T., Winkler, R.L.: Combining probability distributions from experts in risk analysis. Risk Anal. 19(2), 187–203 (1999)
Clemen, R.T., Winkler, R.L.: Aggregating probability distributions. In: Advances in Decision Analysis: From Foundations to Applications, pp. 154–176 (2007)
Damke, C., Hüllermeier, E.: Linear opinion pooling for uncertainty quantification on graphs. In: UAI 2024, Barcelona (2024)
Damke, C., Melnikov, V., Hüllermeier, E.: A novel higher-order Weisfeiler-Lehman graph convolution. In: ACML, pp. 49–64. PMLR (2020)
Depeweg, S., Hernandez-Lobato, J.M., Doshi-Velez, F., Udluft, S.: Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In: ICML, pp. 1184–1193. PMLR (2018)
Duan, R., Caffo, B., Bai, H.X., Sair, H.I., Jones, C.: Evidential uncertainty quantification: a variance-based perspective. In: WACV (2024)
Gasteiger, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks meet personalized pagerank. In: ICLR (2018)
Genest, C.: A characterization theorem for externally Bayesian groups. Ann. Stat. 12(3), 1100–1105 (1984)
Genest, C., Zidek, J.V.: Combining probability distributions: a critique and an annotated bibliography. Stat. Sci. 1(1), 114–135 (1986)
Getoor, L.: Link-based classification. In: Getoor, L. (ed.) Advanced Methods for Knowledge Discovery from Complex Data. AIKP, pp. 189–207. Springer, London (2005). https://doi.org/10.1007/1-84628-284-5_7
Giles, C.L., Bollacker, K.D., Lawrence, S.: CiteSeer: an automatic citation indexing system. In: Third ACM Conference on Digital Libraries, pp. 89–98 (1998)
Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. In: NeurIPS, vol. 33, pp. 22118–22133 (2020)
Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110(3) (2021)
Huseljic, D., Sick, B., Herde, M., Kottke, D.: Separation of aleatoric and epistemic uncertainty in deterministic deep neural networks. In: ICPR 2020 (2021)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NeurIPS, pp. 5580–5590. Curran Associates Inc. (2017)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)
Koliander, G., El-Laham, Y., Djurić, P.M., Hlawatsch, F.: Fusion of probability density functions. Proc. IEEE 110(4), 404–453 (2022)
Kopetzki, A.K., Charpentier, B., Zügner, D., Giri, S., Günnemann, S.: Evaluating robustness of predictive uncertainty estimation: are Dirichlet-based models reliable? In: ICML, pp. 5707–5718. PMLR (2021)
Kotelevskii, N., Horváth, S., Nandakumar, K., Takáč, M., Panov, M.: Dirichlet-Based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks (2023)
Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: NeurIPS, pp. 7047–7058. Curran Associates Inc. (2018)
Maron, H., Ben-Hamu, H., Serviansky, H., Lipman, Y.: Provably powerful graph networks. arXiv (2019)
McAuley, J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–52 (2015)
McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retrieval 3(2) (2000)
Namata, G., London, B., Getoor, L., Huang, B.: Query-driven active surveying for collective classification. In: MLG Workshop (2012)
Pal, N.R., Bezdek, J.C., Hemasinha, R.: Uncertainty measures for evidential reasoning II: a new measure of total uncertainty. IJAR 8(1), 1–16 (1993)
Redner, S.: How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4(2), 131–134 (1998)
Sale, Y., Hofman, P., Wimmer, L., Hüllermeier, E., Nagler, T.: Second-Order Uncertainty Quantification: Variance-Based Measures (2023)
Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93 (2008)
Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. In: NeurIPS, pp. 3183–3193. Curran Associates Inc. (2018)
Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. SIGKDD Explor. Newsl. 19(1), 22–36 (2017)
Stadler, M., Charpentier, B., Geisler, S., Zügner, D., Günnemann, S.: Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (2021)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
Wang, M., Yu, G., Yu, D.: Measuring the preferential attachment mechanism in citation networks. Physica A: Stat Mech. Appl. 387(18) (2008)
Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference, pp. 2022–2032 (2019)
Wimmer, L., Sale, Y., Hofman, P., Bischl, B., Hüllermeier, E.: Quantifying aleatoric and epistemic uncertainty in machine learning: are conditional entropy and mutual information appropriate measures? In: UAI 2023, pp. 2282–2292. PMLR (2023)
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2018)
Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 793–803 (2019)
Zhao, X., Chen, F., Hu, S., Cho, J.H.: Uncertainty aware semi-supervised learning on graph data. In: NeurIPS, pp. 12827–12836. Curran Associates Inc. (2020)
Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily in graph neural networks: current limitations and effective designs. In: NeurIPS, pp. 7793–7804. Curran Associates Inc. (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Damke, C., Hüllermeier, E. (2024). CUQ-GNN: Committee-Based Graph Uncertainty Quantification Using Posterior Networks. In: Bifet, A., et al. Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14948. Springer, Cham. https://doi.org/10.1007/978-3-031-70371-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-70371-3_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70370-6
Online ISBN: 978-3-031-70371-3
eBook Packages: Computer ScienceComputer Science (R0)