[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

LTCR: Long Temporal Characteristic Reconstruction for Segmentation in Contrastive Learning

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14945))

  • 502 Accesses

Abstract

Contrastive learning is extensively employed for time series representation learning. Existing contrastive learning methods often split long real-world time series records into short samples along the temporal dimension to mitigate the explosive growth in storage and enhance the effectiveness of representations. However, the segmentation in contrastive learning may result in the loss of long characteristics, such as periodicities and trends of the original time series. To address this issue, we propose LTCR to reconstruct these long temporal characteristics after the segmentation. There are two key components of LTCR. On the one hand, we propose a novel definition of positive and negative pairs for contrastive learning. We treat the samples separated by integer multiples of a long periodicity from the same record as positive pairs and the other samples from the same record as negative samples to capture the periodic similarity, where the periodicity is calculated by the analysis in the frequency domain. On the other hand, we apply relative position prediction in the representation space to mine the trend characteristics of the original records. Comprehensive experiments have been carried out on three real-world time-series datasets, AD, TDBrain, and NerveDamage, which have been widely used in the field of time series representation. The results have demonstrated that LTCR significantly enhances the effectiveness of current contrastive learning methods, working as a plug-and-play plugin. We release the code and datasets at https://anonymous.4open.science/r/LTCR-76D5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsenault, C., et al.: Covid-19 and resilience of healthcare systems in ten countries. Nat. Med. 28(6), 1314–1324 (2022)

    Article  Google Scholar 

  2. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  4. Chen, Z., Xu, J., Peng, T., Yang, C.: Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge. IEEE Trans. Cybernet. 52(9), 9157–9169 (2021)

    Article  Google Scholar 

  5. Ching, T., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141), 20170387 (2018)

    Article  Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Dijk, H., van Wingen, G., Denys, D., Olbrich, S., Ruth, R., Arns, M.: The two decades brainclinics research archive for insights in neurophysiology (TDBRAIN) database. Sci. Data 9 (2022). https://doi.org/10.1038/s41597-022-01409-z

  8. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  9. Eldele, E., et al.: Time-series representation learning via temporal and contextual contrasting. arXiv preprint arXiv:2106.14112 (2021)

  10. Escudero, J., Abásolo, D., Hornero, R., Espino, P., López, M.: Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 27(11), 1091 (2006)

    Article  Google Scholar 

  11. Fang, H., Wang, S., Zhou, M., Ding, J., Xie, P.: CERT: contrastive self-supervised learning for language understanding. arXiv preprint arXiv:2005.12766 (2020)

  12. Giorgi, J., Nitski, O., Wang, B., Bader, G.: DeCLUTR: deep contrastive learning for unsupervised textual representations. arXiv preprint arXiv:2006.03659 (2020)

  13. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  14. Gungor, V.C., Hancke, G.P.: Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans. Industr. Electron. 56(10), 4258–4265 (2009). https://doi.org/10.1109/TIE.2009.2015754

    Article  Google Scholar 

  15. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 297–304. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  17. Kiyasseh, D., Zhu, T., Clifton, D.A.: CLOCS: contrastive learning of cardiac signals across space, time, and patients. In: International Conference on Machine Learning, pp. 5606–5615. PMLR (2021)

    Google Scholar 

  18. Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6874–6883 (2017)

    Google Scholar 

  19. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  20. Madakam, S., Lake, V., Lake, V., Lake, V., et al.: Internet of things (IoT): a literature review. J. Comput. Commun. 3(05), 164 (2015)

    Article  Google Scholar 

  21. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving Jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  22. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  23. Pöppelbaum, J., Chadha, G.S., Schwung, A.: Contrastive learning based self-supervised time-series analysis. Appl. Soft Comput. 117, 108397 (2022)

    Article  Google Scholar 

  24. Qiu, J., Jammalamadaka, S.R., Ning, N.: Multivariate Bayesian structural time series model. J. Mach. Learn. Res. 19(68), 1–33 (2018)

    MathSciNet  Google Scholar 

  25. Robinson, P.M.: Log-periodogram regression of time series with long range dependence. Ann. Statist. 23, 1048–1072 (1995)

    Article  MathSciNet  Google Scholar 

  26. Scott, S.L., Varian, H.R.: Bayesian Variable Selection for Nowcasting Economic Time Series. In: Economic Analysis of the Digital Economy, pp. 119–135. University of Chicago Press (2015)

    Google Scholar 

  27. Shaham, U., Svirsky, J., Katz, O., Talmon, R.: Discovery of single independent latent variable. Adv. Neural. Inf. Process. Syst. 35, 25251–25263 (2022)

    Google Scholar 

  28. Spencer, J., Bowden, R., Hadfield, S.: Medusa: universal feature learning via attentional multitasking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3800–3809 (2022)

    Google Scholar 

  29. Tang, S., et al.: Self-supervised graph neural networks for improved electroencephalographic seizure analysis. arXiv preprint arXiv:2104.08336 (2021)

  30. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XI. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  31. Tonekaboni, S., Eytan, D., Goldenberg, A.: Unsupervised representation learning for time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750 (2021)

  32. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  33. Wang, Y., Han, Y., Wang, H., Zhang, X.: Contrast everything: a hierarchical contrastive framework for medical time-series. arXiv preprint arXiv:2310.14017 (2023)

  34. Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: Cost: contrastive learning of disentangled seasonal-trend representations for time series forecasting. arXiv preprint arXiv:2202.01575 (2022)

  35. Xiao, Z., Liang, S., Wang, J., Xiang, Y., Zhao, X., Song, J.: Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens. 54(9), 5301–5318 (2016)

    Article  Google Scholar 

  36. Xie, Z., Zhou, B., Cheng, X., Schoenfeld, E., Ye, F.: Passive and context-aware in-home vital signs monitoring using co-located UWB-depth sensor fusion. ACM Trans. Comput. Healthcare 3(4) (2022). https://doi.org/10.1145/3549941

  37. Yue, Z., et al.: TS2Vec: towards universal representation of time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8980–8987 (2022)

    Google Scholar 

  38. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part III. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  39. Zhang, X., Zhao, Z., Tsiligkaridis, T., Zitnik, M.: Self-supervised contrastive pre-training for time series via time-frequency consistency. Adv. Neural. Inf. Process. Syst. 35, 3988–4003 (2022)

    Google Scholar 

  40. Zia, H.B., Castro, I., Zubiaga, A., Tyson, G.: Improving zero-shot cross-lingual hate speech detection with pseudo-label fine-tuning of transformer language models. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 16, pp. 1435–1439 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Project “Research and Demonstration of Anomalous Early Warning Methods for Structural Changes of Ancient Buildings Based on Normal Models (2022S172)” of Ningbo Municipal Public Welfare Science and Technology Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yabo Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Wu, Y., Zhang, J., Dong, Y. (2024). LTCR: Long Temporal Characteristic Reconstruction for Segmentation in Contrastive Learning. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14945. Springer, Cham. https://doi.org/10.1007/978-3-031-70362-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70362-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70361-4

  • Online ISBN: 978-3-031-70362-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics