[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Approximate Compression of CNF Concepts

  • Conference paper
  • First Online:
Discovery Science (DS 2024)

Abstract

We consider a novel concept-learning and merging task, motivated by two use-cases. The first is about merging and compressing music playlists, and the second about federated learning with data privacy constraints. Both settings involve multiple learned concepts that must be merged and compressed into a single interpretable and accurate concept description. Our concept descriptions are logical formulae in CNF, for which merging, i.e. disjoining, multiple CNFs may lead to very large concept descriptions. To make the concepts interpretable, we compress them relative to a dataset. We propose a new method named CoWC (Compression Of Weighted Cnf) that approximates a CNF by exploiting techniques of itemset mining and inverse resolution. CoWC compresses the CNF size while also considering the F1-score w.r.t. the dataset. Our empirical evaluation shows that CoWC outperforms alternative compression approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The choice for DL is in line with DUCE [19] and the PMC preprocessor [14].

  2. 2.

    https://github.com/ML-KULeuven/CoWC.

References

  1. Bharati, S., Mondal, M.R.H., Podder, P., Prasath, V.B.S.: Federated learning: applications, challenges and future directions. Int. J. Hybrid Intell. Syst. 18(1–2), 19–35 (2022)

    MATH  Google Scholar 

  2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

    Google Scholar 

  3. Bocklandt, S., Derkinderen, V., Vanderstraeten, K., Pijpops, W., Jaspers, K., Meert, W.: Pruning-based extraction of descriptions from probabilistic circuits (2024)

    Google Scholar 

  4. Darwiche, A.: A logical approach to factoring belief networks. In: KR, pp. 409–420. Morgan Kaufmann (2002)

    Google Scholar 

  5. Defferrard, M., Benzi, K., Vandergheynst, P., Bresson, X.: FMA: a dataset for music analysis. In: ISMIR, pp. 316–323 (2017)

    Google Scholar 

  6. Derkinderen, V., Manhaeve, R., Dos Martires, P.Z., De Raedt, L.: Semirings for probabilistic and neuro-symbolic logic programming. Int. J. Approximate Reasoning 109130 (2024)

    Google Scholar 

  7. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  8. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_5

    Chapter  MATH  Google Scholar 

  9. Goyal, K., et al.: Automatic generation of product concepts from positive examples, with an application to music streaming. In: BNAIC/BENELEARN. Communications in Computer and Information Science, vol. 1805, pp. 47–64. Springer (2022)

    Google Scholar 

  10. Jabbour, S., Sais, L., Salhi, Y.: Mining to compact CNF propositional formulae. CoRR abs/1304.4415 (2013)

    Google Scholar 

  11. Jain, A., Gautrais, C., Kimmig, A., Raedt, L.D.: Learning CNF theories using MDL and predicate invention. In: IJCAI, pp. 2599–2605. ijcai.org (2021)

    Google Scholar 

  12. Korhonen, T., Järvisalo, M.: SharpSAT-TD in model counting competitions 2021-2023. CoRR abs/2308.15819 (2023)

    Google Scholar 

  13. Lagniez, J., Lonca, E., Marquis, P.: Definability for model counting. Artif. Intell. 281, 103229 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lagniez, J., Marquis, P.: Preprocessing for propositional model counting. In: AAAI, pp. 2688–2694. AAAI Press (2014)

    Google Scholar 

  15. Lucchese, C., Orlando, S., Perego, R.: DCI closed: a fast and memory efficient algorithm to mine frequent closed itemsets. In: FIMI. CEUR Workshop Proceedings, vol. 126. CEUR-WS.org (2004)

    Google Scholar 

  16. Manthey, N.: Coprocessor - a standalone SAT preprocessor. CoRR abs/1108.6208 (2011)

    Google Scholar 

  17. Masud, C.L.H.A.S.M.: Multiple Objective Decision Making, Methods and Applications: A State-of-the-Art Survey. Springer (1979)

    Google Scholar 

  18. Michalski, R.S.: A theory and methodology of inductive learning. Artif. Intell. 20(2), 111–161 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Muggleton, S.H.: Duce, an oracle-based approach to constructive induction. In: IJCAI, pp. 287–292. Morgan Kaufmann (1987)

    Google Scholar 

  20. Rauniyar, A., et al.: Federated learning for medical applications: a taxonomy, current trends, challenges, and future research directions. IEEE Internet Things J. 11(5), 7374–7398 (2024)

    Article  MATH  Google Scholar 

  21. Sammut, C., Webb, G.I. (eds.): Inverse Resolution, p. 558. Springer, Boston (2010)

    Google Scholar 

  22. Tseitin, G.S.: On the complexity of derivation in propositional calculus, pp. 466–483. Springer, Heidelberg (1983)

    Google Scholar 

  23. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets. In: FIMI. CEUR Workshop Proceedings, vol. 126. CEUR-WS.org (2004)

    Google Scholar 

  24. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data Min. Knowl. Discov. 23(1), 169–214 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the music streaming company Tunify (https://www.tunify.com/en-gb/) for discussing the use case. VD was supported by the EU H2020 ICT48 project “TAILOR” under contract #952215. This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme. LDR is also supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sieben Bocklandt .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bocklandt, S., Derkinderen, V., Kimmig, A., De Raedt, L. (2025). Approximate Compression of CNF Concepts. In: Pedreschi, D., Monreale, A., Guidotti, R., Pellungrini, R., Naretto, F. (eds) Discovery Science. DS 2024. Lecture Notes in Computer Science(), vol 15244. Springer, Cham. https://doi.org/10.1007/978-3-031-78980-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78980-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78979-3

  • Online ISBN: 978-3-031-78980-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics