Abstract
Delving into the realm of Bangla text analysis, our study ventures to unlock the potential of both Large and Tiny Language Models across a range of classification tasks, from deciphering sentiment to detecting sarcasm, emotion, hate speech, and fake news. In a linguistic landscape where resources are scarce, we fill a crucial gap by meticulously evaluating model performance. Our findings unveil Gemma-2B and Bangla-BERT as top performers, with Gemma-2B excelling in detecting hate speech and sarcasm, while BanglaBERT shines in sentiment analysis and emotion detection. Notably, TinyLlama emerges as a standout, showcasing exceptional prowess in fake news detection. We emphasize the importance of selecting models attuned to the intricacies of Bangla text, with Gemma-2B, TinyLlama, and BanglaBERT exhibiting notable accuracy improvements, surpassing other contenders. Furthermore, we uncover performance disparities influenced by dataset origins, with Bangla Language Models adept at capturing social media sentiments, and Large Language Models excelling in identifying misinformation and abusive language in formal sources. Our comparison with ChatGPT’s zero-shot prompting underscores the necessity for advanced NLP methodologies. By spotlighting TinyLLM, we showcase the potential of advanced NLP in Bangla text classification, paving the way for broader advancements in NLP research.
F. N. Dehan and Md. Fahim—These authors contributed Equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alam, F., et al.: A review of Bangla natural language processing tasks and the utility of transformer models. arXiv preprint arXiv:2107.03844 (2021)
Alam, T., Khan, A., Alam, F.: Bangla text classification using transformers. CoRR arXiv:2011.04446 (2020). https://arxiv.org/abs/2011.04446
Apon, T.S., Anan, R., Modhu, E.A., Suter, A., Sneha, I.J., Alam, M.G.R.: Banglasarc: a dataset for sarcasm detection. In: 2022 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), pp. 1–5. IEEE (2022)
Bhattacharjee, A., et al.: BanglaBERT: language model pretraining and benchmarks for low-resource language understanding evaluation in Bangla. In: Carpuat, M., de Marneffe, M.C., Meza Ruiz, I.V. (eds.) Findings of the Association for Computational Linguistics: NAACL 2022, pp. 1318–1327. Association for Computational Linguistics, Seattle, United States (2022). https://doi.org/10.18653/v1/2022.findings-naacl.98, https://aclanthology.org/2022.findings-naacl.98
Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8440–8451. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.747, https://aclanthology.org/2020.acl-main.747
Corrêa, N.K., Falk, S., Fatimah, S., Sen, A., de Oliveira, N.: Teenytinyllama: open-source tiny language models trained in Brazilian Portuguese (2024)
Dehan, F., Fahim, M., Ali, A.A., Amin, M.A., Rahman, A.: Investigating the effectiveness of graph-based algorithm for bangla text classification. In: Proceedings of the First Workshop on Bangla Language Processing (BLP-2023), pp. 104–116 (2023)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/N19-1423
Fahim, M.: Aambela at blp-2023 task 2: Enhancing banglabert performance for bangla sentiment analysis task with in task pretraining and adversarial weight perturbation. In: Proceedings of the First Workshop on Bangla Language Processing (BLP-2023), pp. 317–323 (2023)
Fahim, M., Ali, A.A., Amin, M.A., Rahman, A.: Contextual Bangla neural stemmer: Finding contextualized root word representations for Bangla words. In: Proceedings of the First Workshop on Bangla Language Processing (BLP-2023), pp. 94–103 (2023)
Fahim, M., Ali, A.A., Amin, M.A., Rahman, A.M.: Edal: entropy based dynamic attention loss for hatespeech classification. In: Proceedings of the 37th Pacific Asia Conference on Language, Information and Computation, pp. 775–785 (2023)
Hasan, M.A., Das, S., Anjum, A., Alam, F., Anjum, A., Sarker, A., Noori, S.R.H.: Zero-and few-shot prompting with LLMS: a comparative study with fine-tuned models for bangla sentiment analysis. arXiv preprint arXiv:2308.10783 (2023)
He, P., Gao, J., Chen, W.: Debertav3: Improving deberta using electra-style pre-training with gradient-disentangled embedding sharing (2021)
He, P., Liu, X., Gao, J., Chen, W.: Deberta: decoding-enhanced BERT with disentangled attention. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=XPZIaotutsD
Hoffmann, J., et al.: Training compute-optimal large language models (2022)
Hossain, M.Z., Rahman, M.A., Islam, M.S., Kar, S.: BanFakeNews: a dataset for detecting fake news in Bangla. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 2862–2871. European Language Resources Association, Marseille, France (2020). https://aclanthology.org/2020.lrec-1.349
Hu, E.J., et al.: Lora: low-rank adaptation of large language models (2021)
Islam, K.I., Kar, S., Islam, M.S., Amin, M.R.: Sentnob: a dataset for analysing sentiment on noisy bangla texts. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 3265–3271 (2021)
Kabir, M., Islam, M.S., Laskar, M.T.R., Nayeem, M.T., Bari, M.S., Hoque, E.: Benllmeval: a comprehensive evaluation into the potentials and pitfalls of large language models on bengali nlp. arXiv preprint arXiv:2309.13173 (2023)
Karim, M.R., Chakravarthi, B.R., Arcan, M., McCrae, J.P., Cochez, M.: Classification benchmarks for under-resourced bengali language based on multichannel convolutional-lstm network. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 390–399 (2020). https://api.semanticscholar.org/CorpusID:215786049
Li, X., Nie, E., Liang, S.: Crosslingual retrieval augmented in-context learning for Bangla. In: Alam, F., Kar, S., Chowdhury, S.A., Sadeque, F., Amin, R. (eds.) Proceedings of the First Workshop on Bangla Language Processing (BLP-2023), pp. 136–151. Association for Computational Linguistics, Singapore (2023). https://doi.org/10.18653/v1/2023.banglalp-1.15, https://aclanthology.org/2023.banglalp-1.15
Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul, S., Bossan, B.: Peft: state-of-the-art parameter-efficient fine-tuning methods (2022). https://github.com/huggingface/peft
Penedo, G., et al.: The RefinedWeb dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. arXiv preprint arXiv:2306.01116 (2023). https://arxiv.org/abs/2306.01116
Sarker, S.: Banglabert: Bengali mask language model for bengali language understanding (2020). https://github.com/sagorbrur/bangla-bert
Team, G.: Gemma: open models based on gemini research and technology (2024)
Trinto, N.I., Ali, M.E.: Detecting multilabel sentiment and emotions from bangla youtube comments. In: 2018 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6 (2018). https://api.semanticscholar.org/CorpusID:54440144
Zhang, P., Zeng, G., Wang, T., Lu, W.: Tinyllama: an open-source small language model (2024)
Zhang, S., et al.: OPT: open pre-trained transformer language models (2022)
Acknowledgments
We are thankful to Independent University, Bangladesh, for their support of this project. We would also like to express our gratitude to the Center for Computational & Data Sciences (CCDS Lab) for providing computational facilities and supervising this project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dehan, F.N., Fahim, M., Rahman, A.K.M.M., Amin, M.A., Ali, A.A. (2025). TinyLLM Efficacy in Low-Resource Language: An Experiment on Bangla Text Classification Task. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15319. Springer, Cham. https://doi.org/10.1007/978-3-031-78495-8_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-78495-8_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78494-1
Online ISBN: 978-3-031-78495-8
eBook Packages: Computer ScienceComputer Science (R0)