[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Audio Deepfake Detection: A Continual Approach with Feature Distillation and Dynamic Class Rebalancing

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

In an era where digital authenticity is frequently compromised by sophisticated synthetic audio technologies, ensuring the integrity of digital media is crucial. This paper addresses the critical challenges of catastrophic forgetting and incremental learning within the domain of audio deepfake detection. We introduce a novel methodology that synergistically combines the discriminative feature extraction capabilities of SincNet with the computational efficiency of LightCNN. Our approach is further augmented by integrating Feature Distillation and Dynamic Class Rebalancing, enhancing the model’s adaptability across evolving deepfake threats while maintaining high accuracy on previously encountered data. The models were tested using the ASVspoof 2015, ASVspoof 2019, and FoR datasets, demonstrating significant improvements in detecting audio deepfakes with reduced computational overhead. Our results illustrate that the proposed model not only effectively counters the issue of catastrophic forgetting but also exhibits superior adaptability through dynamic class rebalancing and feature distillation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, Z., Yamagishi, J., Kinnunen, T., Hanilçi, C., Sahidullah, M., Sizov, A., Evans, N., Todisco, M., Delgado, H.: ASVspoof: the automatic speaker verification spoofing and countermeasures challenge. IEEE Journal of Selected Topics in Signal Processing 11(4), 588–604 (2017)

    Article  Google Scholar 

  2. J. Yi, R. Fu, J. Tao, S. Nie, H. Ma, C. Wang, T. Wang, Z. Tian, Y. Bai, C. Fan, et al., "Add 2022: the first audio deep synthesis detection challenge," in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 9216–9220, 2022

    Google Scholar 

  3. Dixit, A., Kaur, N., Kingra, S.: Review of audio deepfake detection techniques: Issues and prospects. Expert. Syst. 40(8), e13322 (2023)

    Article  Google Scholar 

  4. T. M. Wani and I. Amerini, "Deepfakes audio detection leveraging audio spectrogram and convolutional neural networks," in International Conference on Image Analysis and Processing, pp. 156–167, 2023

    Google Scholar 

  5. Zhang, B., Tondi, B., Barni, M.: Adversarial examples for replay attacks against CNN-based face recognition with anti-spoofing capability. Comput. Vis. Image Underst. 197, 102988 (2020)

    Article  Google Scholar 

  6. H. Ma, J. Yi, J. Tao, Y. Bai, Z. Tian, and C. Wang, "Continual learning for fake audio detection," arXiv preprint arXiv:2104.07286, 2021

  7. H. Shin, J. K. Lee, J. Kim, and J. Kim, "Continual learning with deep generative replay," Advances in Neural Information Processing Systems, vol. 30, 2017

    Google Scholar 

  8. Tadros, T., Krishnan, G.P., Ramyaa, R., Bazhenov, M.: Sleep-like unsupervised replay reduces catastrophic forgetting in artificial neural networks. Nat. Commun. 13(1), 7742 (2022)

    Article  Google Scholar 

  9. Y. Patel, S. Tanwar, R. Gupta, P. Bhattacharya, I. E. Davidson, R. Nyameko, S. Aluvala, and V. Vimal, "Deepfake Generation and Detection: Case Study and Challenges," IEEE Access, 2023

    Google Scholar 

  10. L. Wang, X. Zhang, H. Su, and J. Zhu, "A comprehensive survey of continual learning: Theory, method and application," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024

    Google Scholar 

  11. M. Ravanelli and Y. Bengio, "Speaker recognition from raw waveform with SincNet," in 2018 IEEE Spoken Language Technology Workshop (SLT), pp. 1021–1028, 2018

    Google Scholar 

  12. C. Liu, J. Li, J. Duan, H. Shen, and H. Huang, "LightCvT: Audio forgery detection via fusion of light CNN and transformer," in Proceedings of the 2021 10th International Conference on Computing and Pattern Recognition, pp. 99–105, 2021

    Google Scholar 

  13. Z. Wu, J. Yamagishi, T. Kinnunen, C. Hanilçi, M. Sahidullah, A. Sizov, N. Evans, M. Todisco, and H. Delgado,"ASVspoof: the automatic speaker verification spoofing and countermeasures challenge,"IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 4, pp. 588–604, 2017.

    Google Scholar 

  14. M. Todisco, X. Wang, V. Vestman, Md. Sahidullah, H. Delgado, A. Nautsch, J. Yamagishi, N. Evans, T. Kinnunen, and K. A. Lee, "ASVspoof 2019: Future horizons in spoofed and fake audio detection," arXiv preprint arXiv:1904.05441, 2019

  15. R. Reimao and V. Tzerpos, "FOR: A dataset for synthetic speech detection," in 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD), pp. 1–10, 2019

    Google Scholar 

  16. H. Ma, J. Yi, J. Tao, Y. Bai, Z. Tian, and C. Wang, "Continual learning for fake audio detection," arXiv preprint arXiv:2104.07286, 2021

  17. X. Zhang, J. Yi, C. Wang, C. Zhang, S. Zeng, and J. Tao, "What to remember: Self-adaptive continual learning for audio deepfake detection," arXiv preprint arXiv:2312.09651, 2023

  18. N. M. Müller, P. Czempin, F. Dieckmann, A. Froghyar, and K. Böttinger, "Does audio deepfake detection generalize?", arXiv preprint arXiv:2203.16263, 2022

  19. X. Zhang, J. Yi, J. Tao, C. Wang, and C. Yuan Zhang, "Do you remember? Overcoming catastrophic forgetting for fake audio detection," in International Conference on Machine Learning, pp. 41819–41831, 2023

    Google Scholar 

  20. P. Kawa, M. Plata, and P. Syga, "Defense against adversarial attacks on audio deepfake detection," arXiv preprint arXiv:2212.14597, 2022

  21. J. Khochare, C. Joshi, B. Yenarkar, S. Suratkar, and F. Kazi, “A deep learning framework for audio deepfake detection,” Arabian Journal for Science and Engineering, pp. 1–12, 2021

    Google Scholar 

  22. Yamagishi, J., Wang, X., Todisco, M., Sahidullah, M., Patino, J., Nautsch, A., Liu, X., Lee, K. A., Kinnunen, T., Evans, N., et al. “ASVspoof 2021: accelerating progress in spoofed and deepfake speech detection,” arXiv preprint arXiv:2109.00537, 2021

Download references

Acknowledgements

This study has been partially supported by SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union – NextGenerationEU and Sapienza University of Rome project 2022–2024 “EV2” (003 009 22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiba Majid Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wani, T.M., Amerini, I. (2025). Audio Deepfake Detection: A Continual Approach with Feature Distillation and Dynamic Class Rebalancing. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15321. Springer, Cham. https://doi.org/10.1007/978-3-031-78305-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78305-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78304-3

  • Online ISBN: 978-3-031-78305-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics