[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Image Domain Translation for Few-Shot Learning

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15307))

Included in the following conference series:

  • 176 Accesses

Abstract

Few-shot learning is crucial in machine learning and computer vision. It enables models to recognize new objects with limited labeled data, addressing the challenge of data scarcity and expanding the application of machine learning to domains with scarce data. Previous methods built metric space using labeled data from the base set and then classified queried images from the novel set by finding the nearest class prototype. However, due to the presence of poor-quality data in the novel set, the class prototype often exhibits instability. In response to this challenge, this paper proposes a Semantic Conditional Translation Network for reconstructing stable class prototypes. Specifically, images are first divided into edge domain (i.e., images at the cluster edge) and prototype domain (i.e., images at the cluster center). Then, an Enhanced Generative Adversarial Network is introduced to learn the translation from edge toward prototype, where a Non-parametric Classification Regularizer is designed to enlarge the discriminability of the translated samples. Meanwhile, class definitions are exploited as semantics providing precise descriptions and enhancing translation performance. Experimental results demonstrate that the proposed method obtains competitive results on four benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: NIPS, vol. 29 (2016)

    Google Scholar 

  2. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)

  3. Bateni, P., Goyal, R., Masrani, V., Wood, F., Sigal, L.: Improved few-shot visual classification. In: CVPR, pp. 14493–14502 (2020)

    Google Scholar 

  4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. PAMI 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  5. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115 (1987)

    Article  Google Scholar 

  6. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. arXiv preprint arXiv:1904.04232 (2019)

  7. Chen, W., Si, C., Zhang, Z., Wang, L., Wang, Z., Tan, T.: Semantic prompt for few-shot image recognition. In: CVPR, pp. 23581–23591 (2023)

    Google Scholar 

  8. Chen, Y., Liu, Z., Xu, H., Darrell, T., Wang, X.: Meta-baseline: exploring simple meta-learning for few-shot learning. In: ICCV, pp. 9062–9071 (2021)

    Google Scholar 

  9. Chen, Z., Fu, Y., Wang, Y.X., Ma, L., Liu, W., Hebert, M.: Image deformation meta-networks for one-shot learning. In: CVPR, pp. 8680–8689 (2019)

    Google Scholar 

  10. Chen, Z., Fu, Y., Zhang, Y., Jiang, Y.G., Xue, X., Sigal, L.: Multi-level semantic feature augmentation for one-shot learning. TIP 28(9), 4594–4605 (2019)

    MathSciNet  Google Scholar 

  11. Cheng, H., Yang, S., Zhou, J.T., Guo, L., Wen, B.: Frequency guidance matters in few-shot learning. In: ICCV, pp. 11814–11824 (2023)

    Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)

    Google Scholar 

  13. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  14. Doersch, C., Gupta, A., Zisserman, A.: CrossTransformers: spatially-aware few-shot transfer. In: NIPS, vol. 33, pp. 21981–21993 (2020)

    Google Scholar 

  15. Dong, B., Zhou, P., Yan, S., Zuo, W.: Self-promoted supervision for few-shot transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XX, pp. 329–347. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_19

    Chapter  Google Scholar 

  16. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. JMLR 20(1), 1997–2017 (2019)

    MathSciNet  Google Scholar 

  17. Elsken, T., Staffler, B., Metzen, J.H., Hutter, F.: Meta-learning of neural architectures for few-shot learning. In: CVPR, pp. 12365–12375 (2020)

    Google Scholar 

  18. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  19. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: ICCV, pp. 8059–8068 (2019)

    Google Scholar 

  20. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: ICCV, pp. 3018–3027 (2017)

    Google Scholar 

  21. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a K-means clustering algorithm. RSSC 28(1), 100–108 (1979)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  23. Hiller, M., Ma, R., Harandi, M., Drummond, T.: Rethinking generalization in few-shot classification. NIPS 35, 3582–3595 (2022)

    Google Scholar 

  24. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  25. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  26. Hou, R., Chang, H., Ma, B., Shan, S., Chen, X.: Cross attention network for few-shot classification. In: NIPS, vol. 32 (2019)

    Google Scholar 

  27. Jamal, M.A., Qi, G.J.: Task agnostic meta-learning for few-shot learning. In: CVPR, pp. 11719–11727 (2019)

    Google Scholar 

  28. Kim, J., Kim, H., Kim, G.: Model-agnostic boundary-adversarial sampling for test-time generalization in few-shot learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, pp. 599–617. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_35

    Chapter  Google Scholar 

  29. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  30. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICML Workshop, vol. 2. Lille (2015)

    Google Scholar 

  31. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  32. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR, pp. 10657–10665 (2019)

    Google Scholar 

  33. Li, A., Huang, W., Lan, X., Feng, J., Li, Z., Wang, L.: Boosting few-shot learning with adaptive margin loss. In: CVPR, pp. 12576–12584 (2020)

    Google Scholar 

  34. Li, H., Eigen, D., Dodge, S., Zeiler, M., Wang, X.: Finding task-relevant features for few-shot learning by category traversal. In: CVPR, pp. 1–10 (2019)

    Google Scholar 

  35. Li, K., Zhang, Y., Li, K., Fu, Y.: Adversarial feature hallucination networks for few-shot learning. In: CVPR, pp. 13470–13479 (2020)

    Google Scholar 

  36. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  37. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3. Atlanta, Georgia, USA (2013)

    Google Scholar 

  38. Van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. JMLR 9(11) (2008)

    Google Scholar 

  39. Mangla, P., Kumari, N., Sinha, A., Singh, M., Krishnamurthy, B., Balasubramanian, V.N.: Charting the right manifold: manifold mixup for few-shot learning. In: WAVC, pp. 2218–2227 (2020)

    Google Scholar 

  40. Miller, G.A.: Wordnet: a lexical database for English. CACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  41. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  42. Oreshkin, B., Rodríguez López, P., Lacoste, A.: TADAM: task dependent adaptive metric for improved few-shot learning. In: NIPS, vol. 31 (2018)

    Google Scholar 

  43. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  44. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  45. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676 (2018)

  46. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  47. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960 (2018)

  48. Schwartz, E., et al.: Delta-encoder: an effective sample synthesis method for few-shot object recognition. In: NIPS, vol. 31 (2018)

    Google Scholar 

  49. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. JBD 6(1), 1–48 (2019)

    Google Scholar 

  50. Siyuan Sun, H.G.: Meta-AdaM: a meta-learned adaptive optimizer with momentum for few-shot learning. In: NIPS (2023)

    Google Scholar 

  51. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS, vol. 30 (2017)

    Google Scholar 

  52. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 266–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_16

    Chapter  Google Scholar 

  53. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NIPS, vol. 29 (2016)

    Google Scholar 

  54. Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: CVPR, pp. 7278–7286 (2018)

    Google Scholar 

  55. Xing, C., Rostamzadeh, N., Oreshkin, B., O Pinheiro, P.O.: Adaptive cross-modal few-shot learning. In: NIPS, vol. 32 (2019)

    Google Scholar 

  56. Xu, J., Le, H.: Generating representative samples for few-shot classification. In: CVPR, pp. 9003–9013 (2022)

    Google Scholar 

  57. Xue, W., Wang, W.: One-shot image classification by learning to restore prototypes. In: AAAI, vol. 34, pp. 6558–6565 (2020)

    Google Scholar 

  58. Ye, H.J., Hu, H., Zhan, D.C., Sha, F.: Few-shot learning via embedding adaptation with set-to-set functions. In: CVPR, pp. 8808–8817 (2020)

    Google Scholar 

  59. Zhang, B., Li, X., Ye, Y., Huang, Z., Zhang, L.: Prototype completion with primitive knowledge for few-shot learning. In: CVPR, pp. 3754–3762 (2021)

    Google Scholar 

  60. Zhang, R., Che, T., Ghahramani, Z., Bengio, Y., Song, Y.: MetaGAN: an adversarial approach to few-shot learning. In: NIPS, vol. 31 (2018)

    Google Scholar 

  61. Zintgraf, L., Shiarli, K., Kurin, V., Hofmann, K., Whiteson, S.: Fast context adaptation via meta-learning. In: ICML, pp. 7693–7702. PMLR (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by CNPC Innovation Found (2021DQ02-0903), the National Natural Science Foundation of China under Grant NSFC-62076172, the National Key Research and Development Program of China under Grant 2023YFF1204901, and the Key Research and Development Program of Sichuan Province under Grant 2023YFG0116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., He, Z., Zhang, H. (2025). Image Domain Translation for Few-Shot Learning. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15307. Springer, Cham. https://doi.org/10.1007/978-3-031-78183-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78183-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78182-7

  • Online ISBN: 978-3-031-78183-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics