Abstract
Few-shot learning is crucial in machine learning and computer vision. It enables models to recognize new objects with limited labeled data, addressing the challenge of data scarcity and expanding the application of machine learning to domains with scarce data. Previous methods built metric space using labeled data from the base set and then classified queried images from the novel set by finding the nearest class prototype. However, due to the presence of poor-quality data in the novel set, the class prototype often exhibits instability. In response to this challenge, this paper proposes a Semantic Conditional Translation Network for reconstructing stable class prototypes. Specifically, images are first divided into edge domain (i.e., images at the cluster edge) and prototype domain (i.e., images at the cluster center). Then, an Enhanced Generative Adversarial Network is introduced to learn the translation from edge toward prototype, where a Non-parametric Classification Regularizer is designed to enlarge the discriminability of the translated samples. Meanwhile, class definitions are exploited as semantics providing precise descriptions and enhancing translation performance. Experimental results demonstrate that the proposed method obtains competitive results on four benchmark datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: NIPS, vol. 29 (2016)
Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)
Bateni, P., Goyal, R., Masrani, V., Wood, F., Sigal, L.: Improved few-shot visual classification. In: CVPR, pp. 14493–14502 (2020)
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. PAMI 35(8), 1798–1828 (2013)
Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115 (1987)
Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. arXiv preprint arXiv:1904.04232 (2019)
Chen, W., Si, C., Zhang, Z., Wang, L., Wang, Z., Tan, T.: Semantic prompt for few-shot image recognition. In: CVPR, pp. 23581–23591 (2023)
Chen, Y., Liu, Z., Xu, H., Darrell, T., Wang, X.: Meta-baseline: exploring simple meta-learning for few-shot learning. In: ICCV, pp. 9062–9071 (2021)
Chen, Z., Fu, Y., Wang, Y.X., Ma, L., Liu, W., Hebert, M.: Image deformation meta-networks for one-shot learning. In: CVPR, pp. 8680–8689 (2019)
Chen, Z., Fu, Y., Zhang, Y., Jiang, Y.G., Xue, X., Sigal, L.: Multi-level semantic feature augmentation for one-shot learning. TIP 28(9), 4594–4605 (2019)
Cheng, H., Yang, S., Zhou, J.T., Guo, L., Wen, B.: Frequency guidance matters in few-shot learning. In: ICCV, pp. 11814–11824 (2023)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Doersch, C., Gupta, A., Zisserman, A.: CrossTransformers: spatially-aware few-shot transfer. In: NIPS, vol. 33, pp. 21981–21993 (2020)
Dong, B., Zhou, P., Yan, S., Zuo, W.: Self-promoted supervision for few-shot transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XX, pp. 329–347. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_19
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. JMLR 20(1), 1997–2017 (2019)
Elsken, T., Staffler, B., Metzen, J.H., Hutter, F.: Meta-learning of neural architectures for few-shot learning. In: CVPR, pp. 12365–12375 (2020)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML, pp. 1126–1135. PMLR (2017)
Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: ICCV, pp. 8059–8068 (2019)
Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: ICCV, pp. 3018–3027 (2017)
Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a K-means clustering algorithm. RSSC 28(1), 100–108 (1979)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Hiller, M., Ma, R., Harandi, M., Drummond, T.: Rethinking generalization in few-shot classification. NIPS 35, 3582–3595 (2022)
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hou, R., Chang, H., Ma, B., Shan, S., Chen, X.: Cross attention network for few-shot classification. In: NIPS, vol. 32 (2019)
Jamal, M.A., Qi, G.J.: Task agnostic meta-learning for few-shot learning. In: CVPR, pp. 11719–11727 (2019)
Kim, J., Kim, H., Kim, G.: Model-agnostic boundary-adversarial sampling for test-time generalization in few-shot learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, pp. 599–617. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_35
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICML Workshop, vol. 2. Lille (2015)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR, pp. 10657–10665 (2019)
Li, A., Huang, W., Lan, X., Feng, J., Li, Z., Wang, L.: Boosting few-shot learning with adaptive margin loss. In: CVPR, pp. 12576–12584 (2020)
Li, H., Eigen, D., Dodge, S., Zeiler, M., Wang, X.: Finding task-relevant features for few-shot learning by category traversal. In: CVPR, pp. 1–10 (2019)
Li, K., Zhang, Y., Li, K., Fu, Y.: Adversarial feature hallucination networks for few-shot learning. In: CVPR, pp. 13470–13479 (2020)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)
Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3. Atlanta, Georgia, USA (2013)
Van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. JMLR 9(11) (2008)
Mangla, P., Kumari, N., Sinha, A., Singh, M., Krishnamurthy, B., Balasubramanian, V.N.: Charting the right manifold: manifold mixup for few-shot learning. In: WAVC, pp. 2218–2227 (2020)
Miller, G.A.: Wordnet: a lexical database for English. CACM 38(11), 39–41 (1995)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Oreshkin, B., Rodríguez López, P., Lacoste, A.: TADAM: task dependent adaptive metric for improved few-shot learning. In: NIPS, vol. 31 (2018)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. PMLR (2021)
Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)
Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676 (2018)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Rusu, A.A., et al.: Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960 (2018)
Schwartz, E., et al.: Delta-encoder: an effective sample synthesis method for few-shot object recognition. In: NIPS, vol. 31 (2018)
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. JBD 6(1), 1–48 (2019)
Siyuan Sun, H.G.: Meta-AdaM: a meta-learned adaptive optimizer with momentum for few-shot learning. In: NIPS (2023)
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS, vol. 30 (2017)
Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 266–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_16
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NIPS, vol. 29 (2016)
Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: CVPR, pp. 7278–7286 (2018)
Xing, C., Rostamzadeh, N., Oreshkin, B., O Pinheiro, P.O.: Adaptive cross-modal few-shot learning. In: NIPS, vol. 32 (2019)
Xu, J., Le, H.: Generating representative samples for few-shot classification. In: CVPR, pp. 9003–9013 (2022)
Xue, W., Wang, W.: One-shot image classification by learning to restore prototypes. In: AAAI, vol. 34, pp. 6558–6565 (2020)
Ye, H.J., Hu, H., Zhan, D.C., Sha, F.: Few-shot learning via embedding adaptation with set-to-set functions. In: CVPR, pp. 8808–8817 (2020)
Zhang, B., Li, X., Ye, Y., Huang, Z., Zhang, L.: Prototype completion with primitive knowledge for few-shot learning. In: CVPR, pp. 3754–3762 (2021)
Zhang, R., Che, T., Ghahramani, Z., Bengio, Y., Song, Y.: MetaGAN: an adversarial approach to few-shot learning. In: NIPS, vol. 31 (2018)
Zintgraf, L., Shiarli, K., Kurin, V., Hofmann, K., Whiteson, S.: Fast context adaptation via meta-learning. In: ICML, pp. 7693–7702. PMLR (2019)
Acknowledgements
This work was supported by CNPC Innovation Found (2021DQ02-0903), the National Natural Science Foundation of China under Grant NSFC-62076172, the National Key Research and Development Program of China under Grant 2023YFF1204901, and the Key Research and Development Program of Sichuan Province under Grant 2023YFG0116.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, L., He, Z., Zhang, H. (2025). Image Domain Translation for Few-Shot Learning. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15307. Springer, Cham. https://doi.org/10.1007/978-3-031-78183-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-78183-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78182-7
Online ISBN: 978-3-031-78183-4
eBook Packages: Computer ScienceComputer Science (R0)