[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mask-ControlNet: Higher-Quality Image Generation with an Additional Mask Prompt

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15306))

Included in the following conference series:

  • 131 Accesses

Abstract

Text-to-image generation has witnessed great progress, especially with the recent advancements in diffusion models. Since texts cannot provide detailed conditions like object appearance, reference images are usually leveraged for the control of objects in the generated images. However, existing methods still suffer limited accuracy when the relationship between the foreground and background is complicated. To address this issue, we developed a framework termed Mask-ControlNet by introducing an additional mask prompt. Specifically, we first employ large vision models to obtain masks to segment the objects of interest in the reference image. Then, the object images are employed as additional prompts to facilitate the diffusion model to better understand the relationship between foreground and background regions during image generation. Experiments show that the mask prompts enhance the controllability of the diffusion model to maintain higher fidelity to the reference image while achieving better image quality. Comparison with previous text-to-image generation methods demonstrates our method’s superior quantitative and qualitative performance on the benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avrahami, O., Fried, O., Lischinski, D.: Blended latent diffusion. ACM Trans. Graph. (TOG) 42(4), 1–11 (2023)

    Article  Google Scholar 

  2. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  3. Brooks, T., Holynski, A., Efros, A.A.: InstructPix2Pix: learning to follow image editing instructions (2023)

    Google Scholar 

  4. Cai, S., et al.: DiffDreamer: towards consistent unsupervised single-view scene extrapolation with conditional diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2139–2150, October 2023

    Google Scholar 

  5. Caron, M.,et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  6. Corneanu, C., Gadde, R., Martinez, A.M.: LatentPaint: image inpainting in latent space with diffusion models. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4334–4343 (2024)

    Google Scholar 

  7. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873–12883 (2021)

    Google Scholar 

  8. Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion (2022)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  11. Hu, E.J., et al.: LoRa: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  12. Huang, L., Chen, D., Liu, Y., Shen, Y., Zhao, D., Zhou, J.: Composer: creative and controllable image synthesis with composable conditions. arXiv preprint arXiv:2302.09778 (2023)

  13. Ju, X., Liu, X., Wang, X., Bian, Y., Shan, Y., Xu, Q.: BrushNet: a plug-and-play image inpainting model with decomposed dual-branch diffusion (2024). https://arxiv.org/abs/2403.06976

  14. Ju, X., Zeng, A., Zhao, C., Wang, J., Zhang, L., Xu, Q.: HumanSD: a native skeleton-guided diffusion model for human image generation. arXiv preprint arXiv:2304.04269 (2023)

  15. Kang, M., et al.: Scaling up GANs for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10124–10134 (2023)

    Google Scholar 

  16. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  17. Kawar, B., et al.: Imagic: text-based real image editing with diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017 (2023)

    Google Scholar 

  18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  19. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  20. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  21. Kumari, N., Zhang, B., Wang, S.Y., Shechtman, E., Zhang, R., Zhu, J.Y.: Ablating concepts in text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22691–22702 (2023)

    Google Scholar 

  22. Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept customization of text-to-image diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1931–1941 (2023)

    Google Scholar 

  23. Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 12888–12900. PMLR, 17–23 July 2022. https://proceedings.mlr.press/v162/li22n.html

  24. Li, Y., et al.: GLIGEN: open-set grounded text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22511–22521 (2023)

    Google Scholar 

  25. Liu, X., et al.: More control for free! Image synthesis with semantic diffusion guidance. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 289–299 (2023)

    Google Scholar 

  26. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471 (2022)

    Google Scholar 

  27. Mou, C., et al.: T2I-adapter: learning adapters to dig out more controllable ability for text-to-image diffusion models. arXiv preprint arXiv:2302.08453 (2023)

  28. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with pixelCNN decoders. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  29. Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205 (2023)

    Google Scholar 

  30. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  31. Reddy, M.D.M., Basha, M.S.M., Hari, M.M.C., Penchalaiah, M.N.: DALL-E: creating images from text. UGC Care Group I J. 8(14), 71–75 (2021)

    Google Scholar 

  32. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  33. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)

    Google Scholar 

  34. Seitzer, M.: PyTorch-fid: fid score for pytorch (2020)

    Google Scholar 

  35. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)

    Google Scholar 

  36. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  37. Tanchenko, A.: Visual-PSNR measure of image quality. J. Vis. Commun. Image Represent. 25(5), 874–878 (2014)

    Article  Google Scholar 

  38. Van Den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International Conference on Machine Learning, pp. 1747–1756. PMLR (2016)

    Google Scholar 

  39. Voynov, A., Aberman, K., Cohen-Or, D.: Sketch-guided text-to-image diffusion models. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–11 (2023)

    Google Scholar 

  40. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  41. Xie, S., Zhang, Z., Lin, Z., Hinz, T., Zhang, K.: SmartBrush: text and shape guided object inpainting with diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22428–22437 (2023)

    Google Scholar 

  42. Yu, T., et al.: Inpaint anything: segment anything meets image inpainting (2023). https://arxiv.org/abs/2304.06790

  43. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)

    Google Scholar 

  44. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  45. Zheng, G., Zhou, X., Li, X., Qi, Z., Shan, Y., Li, X.: LayoutDiffusion: controllable diffusion model for layout-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22490–22499 (2023)

    Google Scholar 

  46. Zhou, Y., Liu, B., Zhu, Y., Yang, X., Chen, C., Xu, J.: Shifted diffusion for text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10157–10166 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Xiong, H., Wang, H., Wang, L., Li, Z. (2025). Mask-ControlNet: Higher-Quality Image Generation with an Additional Mask Prompt. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15306. Springer, Cham. https://doi.org/10.1007/978-3-031-78172-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78172-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78171-1

  • Online ISBN: 978-3-031-78172-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics