[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SemFaceEdit: Semantic Face Editing on Generative Radiance Manifolds

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

Despite multiple view consistency offered by 3D-aware GAN techniques, the resulting images often lack the capacity for localized editing. In response, generative radiance manifolds emerge as an efficient approach for constrained point sampling within volumes, effectively reducing computational demands and enabling the learning of fine details. This work introduces SemFaceEdit, a novel method that streamlines the appearance and geometric editing process by generating semantic fields on generative radiance manifolds. Utilizing latent codes, our method effectively disentangles the geometry and appearance associated with different facial semantics within the generated image. In contrast to existing methods that can change the appearance of the entire radiance field, our method enables the precise editing of particular facial semantics while preserving the integrity of other regions. Our network comprises two key modules: the Geometry module, which generates semantic radiance and occupancy fields, and the Appearance module, which is responsible for predicting RGB radiance. We jointly train both modules in adversarial settings to learn semantic-aware geometry and appearance descriptors. The appearance descriptors are then conditioned on their respective semantic latent codes by the Appearance Module, facilitating disentanglement and enhanced control. Our experiments highlight SemFaceEdit’s superior performance in semantic field-based editing, particularly in achieving improved radiance field disentanglement.

This work is supported by Jibaben Patel Chair in AI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdal, R., Zhu, P., Mitra, N.J., Wonka, P.: StyleFlow: attribute-conditioned exploration of styleGAN-generated images using conditional continuous normalizing flows. ACM Trans. Graph. (ToG) 40(3), 1–21 (2021)

    Article  Google Scholar 

  2. An, S., Xu, H., Shi, Y., Song, G., Ogras, U., Luo, L.: PanoHead: geometry-aware 3D full-head synthesis in 360. arXiv preprint arXiv:2303.13071 (2023)

  3. Athar, S., Shu, Z., Samaras, D.: Flame-in-NeRF: neural control of radiance fields for free view face animation. In: 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG), pp. 1–8. IEEE (2023)

    Google Scholar 

  4. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. arXiv preprint arXiv:1801.01401 (2018)

  5. Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16123–16133 (2022)

    Google Scholar 

  6. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: PI-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5799–5809 (2021)

    Google Scholar 

  7. Chen, A., Liu, R., Xie, L., Chen, Z., Su, H., Yu, J.: SofGAN: a portrait image generator with dynamic styling. ACM Trans. Graph. 41(1), 1–26 (2022)

    Google Scholar 

  8. Deng, Y., Yang, J., Xiang, J., Tong, X.: GRAM: generative radiance manifolds for 3D-aware image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10673–10683 (2022)

    Google Scholar 

  9. Ding, Z., Zhang, X., Xia, Z., Jebe, L., Tu, Z., Zhang, X.: DiffusionRig: learning personalized priors for facial appearance editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12736–12746 (2023)

    Google Scholar 

  10. Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3D face model from in-the-wild images. ACM Trans. Graph. (ToG) 40(4), 1–13 (2021)

    Article  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  12. Gu, J., Liu, L., Wang, P., Theobalt, C.: StyleNeRF: a style-based 3D-aware generator for high-resolution image synthesis. arXiv preprint arXiv:2110.08985 (2021)

  13. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  14. Huang, Z., Chan, K.C., Jiang, Y., Liu, Z.: Collaborative diffusion for multi-modal face generation and editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6080–6090 (2023)

    Google Scholar 

  15. Jiang, K., Chen, S.Y., Liu, F.L., Fu, H., Gao, L.: NeRFFaceEditing: disentangled face editing in neural radiance fields. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)

    Google Scholar 

  16. Jo, K., Shim, G., Jung, S., Yang, S., Choo, J.: CG-NeRF: conditional generative neural radiance fields. arXiv preprint arXiv:2112.03517 (2021)

  17. Kim, G., Kwon, T., Ye, J.C.: DiffusionClip: text-guided diffusion models for robust image manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2426–2435 (2022)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Lee, C.H., Liu, Z., Wu, L., Luo, P.: MaskGAN: towards diverse and interactive facial image manipulation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  20. Leimkühler, T., Drettakis, G.: FreestyleGAN: free-view editable portrait rendering with the camera manifold. arXiv preprint arXiv:2109.09378 (2021)

  21. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4d scans. ACM Trans. Graph. 36(6), 194–1 (2017)

    Article  Google Scholar 

  22. Liao, Y., Schwarz, K., Mescheder, L., Geiger, A.: Towards unsupervised learning of generative models for 3D controllable image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  23. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for GANs do actually converge? In: International Conference on Machine Learning, pp. 3481–3490. PMLR (2018)

    Google Scholar 

  24. Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.: Implicit surface representations as layers in neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4743–4752 (2019)

    Google Scholar 

  25. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  26. Niemeyer, M., Geiger, A.: Giraffe: representing scenes as compositional generative neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11453–11464 (2021)

    Google Scholar 

  27. Oechsle, M., Peng, S., Geiger, A.: UNISURF: unifying neural implicit surfaces and radiance fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5589–5599 (2021)

    Google Scholar 

  28. Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J.J., Kemelmacher-Shlizerman, I.: StylesDF: high-resolution 3D-consistent image and geometry generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13503–13513 (2022)

    Google Scholar 

  29. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  30. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: 2009 sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 296–301. IEEE (2009)

    Google Scholar 

  31. Roich, D., Mokady, R., Bermano, A.H., Cohen-Or, D.: Pivotal tuning for latent-based editing of real images. ACM Trans. graph. 42(1), 1–13 (2022)

    Article  Google Scholar 

  32. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2437–2446 (2019)

    Google Scholar 

  33. Sun, J., Deng, Q., Li, Q., Sun, M., Ren, M., Sun, Z.: AnyFace: free-style text-to-face synthesis and manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18687–18696 (2022)

    Google Scholar 

  34. Sun, J., Wang, X., Shi, Y., Wang, L., Wang, J., Liu, Y.: IDE-3D: interactive disentangled editing for high-resolution 3D-aware portrait synthesis. ACM Trans. Graph. (ToG) 41(6), 1–10 (2022)

    Article  Google Scholar 

  35. Sun, J., et al.: FENERF: face editing in neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7672–7682 (2022)

    Google Scholar 

  36. Tucker, R., Snavely, N.: Single-view view synthesis with multiplane images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 551–560 (2020)

    Google Scholar 

  37. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)

    Google Scholar 

  38. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20

    Chapter  Google Scholar 

  39. Zheng, Y., Abrevaya, V.F., Bühler, M.C., Chen, X., Black, M.J., Hilliges, O.: IM avatar: implicit morphable head avatars from videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13545–13555 (2022)

    Google Scholar 

  40. Zhou, P., Xie, L., Ni, B., Tian, Q.: CIPS-3D: a 3D-aware generator of GANs based on conditionally-independent pixel synthesis. arXiv preprint arXiv:2110.09788 (2021)

  41. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. arXiv preprint arXiv:1805.09817 (2018)

  42. Zhu, P., Abdal, R., Qin, Y., Wonka, P.: SEAN: image synthesis with semantic region-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5104–5113 (2020)

    Google Scholar 

  43. Zhuang, Y., Zhu, H., Sun, X., Cao, X.: MoFaNeRF: morphable facial neural radiance field. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13663, pp. 268–285. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20062-5_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmuganathan Raman .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2429 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, S., Raman, S. (2025). SemFaceEdit: Semantic Face Editing on Generative Radiance Manifolds. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15306. Springer, Cham. https://doi.org/10.1007/978-3-031-78172-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78172-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78171-1

  • Online ISBN: 978-3-031-78172-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics