Abstract
Despite multiple view consistency offered by 3D-aware GAN techniques, the resulting images often lack the capacity for localized editing. In response, generative radiance manifolds emerge as an efficient approach for constrained point sampling within volumes, effectively reducing computational demands and enabling the learning of fine details. This work introduces SemFaceEdit, a novel method that streamlines the appearance and geometric editing process by generating semantic fields on generative radiance manifolds. Utilizing latent codes, our method effectively disentangles the geometry and appearance associated with different facial semantics within the generated image. In contrast to existing methods that can change the appearance of the entire radiance field, our method enables the precise editing of particular facial semantics while preserving the integrity of other regions. Our network comprises two key modules: the Geometry module, which generates semantic radiance and occupancy fields, and the Appearance module, which is responsible for predicting RGB radiance. We jointly train both modules in adversarial settings to learn semantic-aware geometry and appearance descriptors. The appearance descriptors are then conditioned on their respective semantic latent codes by the Appearance Module, facilitating disentanglement and enhanced control. Our experiments highlight SemFaceEdit’s superior performance in semantic field-based editing, particularly in achieving improved radiance field disentanglement.
This work is supported by Jibaben Patel Chair in AI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdal, R., Zhu, P., Mitra, N.J., Wonka, P.: StyleFlow: attribute-conditioned exploration of styleGAN-generated images using conditional continuous normalizing flows. ACM Trans. Graph. (ToG) 40(3), 1–21 (2021)
An, S., Xu, H., Shi, Y., Song, G., Ogras, U., Luo, L.: PanoHead: geometry-aware 3D full-head synthesis in 360. arXiv preprint arXiv:2303.13071 (2023)
Athar, S., Shu, Z., Samaras, D.: Flame-in-NeRF: neural control of radiance fields for free view face animation. In: 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG), pp. 1–8. IEEE (2023)
Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. arXiv preprint arXiv:1801.01401 (2018)
Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16123–16133 (2022)
Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: PI-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5799–5809 (2021)
Chen, A., Liu, R., Xie, L., Chen, Z., Su, H., Yu, J.: SofGAN: a portrait image generator with dynamic styling. ACM Trans. Graph. 41(1), 1–26 (2022)
Deng, Y., Yang, J., Xiang, J., Tong, X.: GRAM: generative radiance manifolds for 3D-aware image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10673–10683 (2022)
Ding, Z., Zhang, X., Xia, Z., Jebe, L., Tu, Z., Zhang, X.: DiffusionRig: learning personalized priors for facial appearance editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12736–12746 (2023)
Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3D face model from in-the-wild images. ACM Trans. Graph. (ToG) 40(4), 1–13 (2021)
Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)
Gu, J., Liu, L., Wang, P., Theobalt, C.: StyleNeRF: a style-based 3D-aware generator for high-resolution image synthesis. arXiv preprint arXiv:2110.08985 (2021)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30 (2017)
Huang, Z., Chan, K.C., Jiang, Y., Liu, Z.: Collaborative diffusion for multi-modal face generation and editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6080–6090 (2023)
Jiang, K., Chen, S.Y., Liu, F.L., Fu, H., Gao, L.: NeRFFaceEditing: disentangled face editing in neural radiance fields. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)
Jo, K., Shim, G., Jung, S., Yang, S., Choo, J.: CG-NeRF: conditional generative neural radiance fields. arXiv preprint arXiv:2112.03517 (2021)
Kim, G., Kwon, T., Ye, J.C.: DiffusionClip: text-guided diffusion models for robust image manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2426–2435 (2022)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lee, C.H., Liu, Z., Wu, L., Luo, P.: MaskGAN: towards diverse and interactive facial image manipulation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Leimkühler, T., Drettakis, G.: FreestyleGAN: free-view editable portrait rendering with the camera manifold. arXiv preprint arXiv:2109.09378 (2021)
Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4d scans. ACM Trans. Graph. 36(6), 194–1 (2017)
Liao, Y., Schwarz, K., Mescheder, L., Geiger, A.: Towards unsupervised learning of generative models for 3D controllable image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)
Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for GANs do actually converge? In: International Conference on Machine Learning, pp. 3481–3490. PMLR (2018)
Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.: Implicit surface representations as layers in neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4743–4752 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Niemeyer, M., Geiger, A.: Giraffe: representing scenes as compositional generative neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11453–11464 (2021)
Oechsle, M., Peng, S., Geiger, A.: UNISURF: unifying neural implicit surfaces and radiance fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5589–5599 (2021)
Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J.J., Kemelmacher-Shlizerman, I.: StylesDF: high-resolution 3D-consistent image and geometry generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13503–13513 (2022)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)
Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: 2009 sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 296–301. IEEE (2009)
Roich, D., Mokady, R., Bermano, A.H., Cohen-Or, D.: Pivotal tuning for latent-based editing of real images. ACM Trans. graph. 42(1), 1–13 (2022)
Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2437–2446 (2019)
Sun, J., Deng, Q., Li, Q., Sun, M., Ren, M., Sun, Z.: AnyFace: free-style text-to-face synthesis and manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18687–18696 (2022)
Sun, J., Wang, X., Shi, Y., Wang, L., Wang, J., Liu, Y.: IDE-3D: interactive disentangled editing for high-resolution 3D-aware portrait synthesis. ACM Trans. Graph. (ToG) 41(6), 1–10 (2022)
Sun, J., et al.: FENERF: face editing in neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7672–7682 (2022)
Tucker, R., Snavely, N.: Single-view view synthesis with multiplane images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 551–560 (2020)
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)
Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20
Zheng, Y., Abrevaya, V.F., Bühler, M.C., Chen, X., Black, M.J., Hilliges, O.: IM avatar: implicit morphable head avatars from videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13545–13555 (2022)
Zhou, P., Xie, L., Ni, B., Tian, Q.: CIPS-3D: a 3D-aware generator of GANs based on conditionally-independent pixel synthesis. arXiv preprint arXiv:2110.09788 (2021)
Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. arXiv preprint arXiv:1805.09817 (2018)
Zhu, P., Abdal, R., Qin, Y., Wonka, P.: SEAN: image synthesis with semantic region-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5104–5113 (2020)
Zhuang, Y., Zhu, H., Sun, X., Cao, X.: MoFaNeRF: morphable facial neural radiance field. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13663, pp. 268–285. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20062-5_16
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Verma, S., Raman, S. (2025). SemFaceEdit: Semantic Face Editing on Generative Radiance Manifolds. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15306. Springer, Cham. https://doi.org/10.1007/978-3-031-78172-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-78172-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78171-1
Online ISBN: 978-3-031-78172-8
eBook Packages: Computer ScienceComputer Science (R0)