[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Guided Input Sampling-Based Perturbative Approach for Explainable AI in Image-Based Application

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15304))

Included in the following conference series:

  • 152 Accesses

Abstract

The role of artificial intelligence-based decision-making processes in the recent advancements of data-driven technology is inevitable, but the key challenge is embedded here in the opacity of their decision-making mechanisms, presenting difficulties in explaining these processes to the end users. The well-known RISE method (randomized input sampling for explanations) and its variants are widely used now-a-days for explainability with image data through perturbative approach. However, due to significantly large number of forward passes as required for increasing number of mask generation, RISE is heavy in computation. The issue is potentially addressed in this paper by intelligently sampling fewer number of masks through a guided scheme, instead of using large number of randomly generated masks. Our proposed approach of guided input sampling-based explanations (GuISE), introduces an innovative method for generating an importance map, illustrating the saliency of each pixel in the model’s predictions. Unlike white-box explanation schemes that depend on gradients or internal network states for pixel importance estimation, GuISE functions as a black-box approach and outperforms particularly in its masking technique. To validate our approach, we compare it against the state-of-the-art importance extraction methods using both automatic deletion and insertion metrics. Extensive experiments on benchmark image datasets demonstrates comparable or superior performance of our proposed GuISE, even surpassing the white-box approaches. This highlights the effectiveness of GuISE in achieving explainability of deep neural networks for image-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://jianghz.me/drfi/.

References

  1. Bayer, J., Münch, D., Arens, M.: A comparison of deep saliency map generators on multispectral data in object detection. In: Counterterrorism, Crime Fighting, Forensics, and Surveillance Technologies V, vol. 11869, pp. 61–74. SPIE (2021)

    Google Scholar 

  2. Bayer, J., Münch, D., Arens, M.: Deep saliency map generators for multispectral video classification. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 3757–3764. IEEE (2022)

    Google Scholar 

  3. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018)

    Google Scholar 

  4. Chen, T.C.T., Wu, H.C., Chiu, M.C.: A deep neural network with modified random forest incremental interpretation approach for diagnosing diabetes in smart healthcare. Appl. Soft Comput. 152, 111183 (2024)

    Article  Google Scholar 

  5. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88, 303–338 (2010)

    Article  Google Scholar 

  6. Hakkoum, H., Abnane, I., Idri, A.: Interpretability in the medical field: a systematic mapping and review study. Appl. Soft Comput. 117, 108391 (2022)

    Article  Google Scholar 

  7. Kaltsas, G.A., Nomikos, P., Kontogeorgos, G., Buchfelder, M., Grossman, A.B.: Diagnosis and management of pituitary carcinomas. J. Clin. Endocrinol. Metab. 90(5), 3089–3099 (2005)

    Article  Google Scholar 

  8. Nguyen, T.T.H., Truong, V.B., Nguyen, V.T.K., Cao, Q.H., Nguyen, Q.K.: Towards trust of explainable AI in thyroid nodule diagnosis. arXiv preprint arXiv:2303.04731 (2023)

  9. Nickparvar, M.: Brain tumor MRI dataset. Data set. Kaggle (2021). https://doi.org/10.34740/KAGGLE/DSV/2645886. Accessed 3 Mar 2021

  10. Petsiuk, V., Das, A., Saenko, K.: RISE: randomized input sampling for explanation of black-box models. arXiv preprint arXiv:1806.07421 (2018)

  11. Petsiuk, V., et al.: Black-box explanation of object detectors via saliency maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11443–11452 (2021)

    Google Scholar 

  12. Ribeiro, M.T., Singh, S., Guestrin, C.: “ Why should I trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  13. Roshan, K., Zafar, A.: Utilizing XAI technique to improve autoencoder based model for computer network anomaly detection with Shapley additive explanation (SHAP). arXiv preprint arXiv:2112.08442 (2021)

  14. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  15. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  16. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  17. Soomro, S., Niaz, A., Choi, K.N.: Grad++ ScoreCAM: enhancing visual explanations of deep convolutional networks using incremented gradient and score-weighted methods. IEEE Access (2024)

    Google Scholar 

  18. Szczepankiewicz, K., et al.: Ground truth based comparison of saliency maps algorithms. Sci. Rep. 13(1), 16887 (2023)

    Article  Google Scholar 

  19. Truong, V.B., Nguyen, T.T.H., Nguyen, V.T.K., Nguyen, Q.K., Cao, Q.H.: Towards better explanations for object detection. Preprint arXiv:2306.02744 (2023)

  20. Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 24–25 (2020)

    Google Scholar 

  21. Yang, Q., Zhu, X., Fwu, J.K., Ye, Y., You, G., Zhu, Y.: MFPP: morphological fragmental perturbation pyramid for black-box model explanations. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 1376–1383. IEEE (2021)

    Google Scholar 

  22. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

  23. Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. Int. J. Comput. Vision 126(10), 1084–1102 (2018)

    Article  Google Scholar 

  24. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Start-up Research Grant [SRG/2023/002658 to M.D.] from the SERB (DST), Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monidipa Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bano, A., Das, M. (2025). A Guided Input Sampling-Based Perturbative Approach for Explainable AI in Image-Based Application. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15304. Springer, Cham. https://doi.org/10.1007/978-3-031-78128-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78128-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78127-8

  • Online ISBN: 978-3-031-78128-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics