[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hotel’s Price Prediction Based on Country Specific Data

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2024 (IDEAL 2024)

Abstract

Online hotel booking became increasingly popular as time passed, and with its popularity, the data that can be collected based on customer actions has increased. This data can serve to build intelligent systems that can provide knowledge for both customers and hotel owners. In this paper, we focus on hotel owners who can benefit from the collected data by adjusting the prices to optimise the profit of their accommodations. To accomplish this, we built a system that collected the data from Booking.com and gathered a helpful dataset for price prediction. We used five regression algorithms and an optimization technique to obtain the best results, leading us to a 9% error for price prediction. This result allows accommodation owners to predict the room price to keep the rooms fully occupied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 54.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data: www.github.com/BAndrewGit/Dataset_and_ML_Booking/tree/main/Dataset.

  2. 2.

    System: www.github.com/BAndrewGit/Dataset_and_ML_Booking.

References

  1. Al Shehhi, M., Karathanasopoulos, A.: Forecasting hotel room prices in selected GCC cities using deep learning. J. Hosp. Tour. Manag. 42, 40–50 (2020)

    Article  Google Scholar 

  2. Awad, M., Khanna, R., Awad, M., Khanna, R.: Support vector regression. In: Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, pp. 67–80 (2015)

    Google Scholar 

  3. Dhillon, J., et al.: Analysis of Airbnb prices using machine learning techniques. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0297–0303. IEEE (2021)

    Google Scholar 

  4. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-sklearn 2.0: the next generation. arXiv preprint arXiv:2007.04074, vol. 24 (2020)

  5. Hu, T., Song, H.: Analysis of influencing factors and distribution simulation of budget hotel room pricing based on big data and machine learning from a spatial perspective. Sustainability 15(1), 617 (2022)

    Article  Google Scholar 

  6. Jhalani, T., Kant, V., Dwivedi, P.: A linear regression approach to multi-criteria recommender system. In: Tan, Y., Shi, Y. (eds.) DMBD 2016. LNCS, vol. 9714, pp. 235–243. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40973-3_23

    Chapter  Google Scholar 

  7. Liu, Y., Wang, Y., Zhang, J.: New machine learning algorithm: random forest. In: Liu, B., Ma, M., Chang, J. (eds.) ICICA 2012. LNCS, vol. 7473, pp. 246–252. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34062-8_32

    Chapter  Google Scholar 

  8. Liu, Y.: Airbnb pricing based on statistical machine learning models. In: 2021 International Conference on Signal Processing and Machine Learning (CONF-SPML), pp. 175–185. IEEE (2021)

    Google Scholar 

  9. Mitchell, R., Adinets, A., Rao, T., Frank, E.: XGBoost: scalable GPU accelerated learning. arXiv preprint arXiv:1806.11248 (2018)

  10. Rezazadeh Kalehbasti, P., Nikolenko, L., Rezaei, H.: Airbnb price prediction using machine learning and sentiment analysis. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2021. LNCS, vol. 12844, pp. 173–184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84060-0_11

    Chapter  Google Scholar 

  11. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual variables (1998)

    Google Scholar 

  12. Seber, G.A., Lee, A.J.: Linear Regression Analysis. Wiley, Hoboken (2012)

    Google Scholar 

  13. Shirisha, N., Anusha, K., Kiran, A., Buavani, Y.T.S.: Prediction of hotel booking & cancellation using machine learning algorithms. In: 2023 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–4. IEEE (2023)

    Google Scholar 

  14. Sinaga, K.P., Yang, M.S.: Unsupervised k-means clustering algorithm. IEEE Access 8, 80716–80727 (2020)

    Article  Google Scholar 

  15. Song, Y., Liang, J., Lu, J., Zhao, X.: An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing 251, 26–34 (2017)

    Article  Google Scholar 

  16. Testas, A.: Decision tree regression with pandas, scikit-learn, and PySpark. In: Testas, A. (ed.) Distributed Machine Learning with PySpark: Migrating Effortlessly from Pandas and Scikit-Learn, pp. 75–113. Springer, Cham (2023). https://doi.org/10.1007/978-1-4842-9751-3_4

    Chapter  Google Scholar 

  17. Viverit, L., Heo, C.Y., Pereira, L.N., Tiana, G.: Application of machine learning to cluster hotel booking curves for hotel demand forecasting. Int. J. Hosp. Manag. 111, 103455 (2023)

    Article  Google Scholar 

  18. Yang, S.: Learning-based Airbnb price prediction model. In: 2021 2nd International Conference on E-Commerce and Internet Technology (ECIT), pp. 283–288. IEEE (2021)

    Google Scholar 

  19. Zhu, F., et al.: Modeling price elasticity for occupancy prediction in hotel dynamic pricing. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 4742–4746 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Cristian Mihăescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bălan, A., Popescu, P.Ş., Mihăescu, M.C. (2025). Hotel’s Price Prediction Based on Country Specific Data. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77738-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77737-0

  • Online ISBN: 978-3-031-77738-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics