[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Refining Human-Data Interaction: Advanced Techniques for EEGEyeNet Dataset Precision

  • Conference paper
  • First Online:
HCI International 2024 – Late Breaking Papers (HCII 2024)

Abstract

The EEGEyeNet dataset merges EEG data with eye-tracking technology to advance cognitive research at the intersection of brain dynamics and eye movement. By developing machine learning models to predict eye movements from EEG data, we gain insights into perceptual, attentional, and cognitive processes. However, dataset outliers can compromise model integrity and accuracy. This paper explores the impact of outliers on the state-of-the-art model and highlights the benefits of outlier removal. By identifying and eliminating outliers, we improved the dataset to enhance model performance. Through the integration of advanced modeling techniques from EEGViT and EEGViT-TCNet, we set a new standard in eye-tracking precision, reducing the RMSE from 51.8 to 48.9. Despite removing only 15 outliers out of the 21,464 total data points, we reduced the RMSE by 2.9 mm. This study underscores the critical role of data refinement in advancing Brain-Computer Interfaces (BCI) and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • An, S., Bhat, G., Gumussoy, S., Ogras, U.: Transfer learning for human activity recognition using representational analysis of neural networks. ACM Trans. Comput. Healthc. 4(1), 1–21 (2023)

    Article  Google Scholar 

  • An, S., Tuncel, Y., Basaklar, T., Ogras, U.Y.: A survey of embedded machine learning for smart and sustainable healthcare applications. In: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing: Use Cases and Emerging Challenges, pp. 127–150. Springer, Heidelberg (2023b)

    Google Scholar 

  • Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  • Boukerche, A., Zheng, L., Alfandi, O.: Outlier detection: methods, models, and classification. ACM Comput. Surv. (CSUR) 53(3), 1–37 (2020)

    Article  Google Scholar 

  • Boukerche, A., Zheng, L., Alfandi, O.: Outlier detection: methods, models, and classification. ACM Comput. Surv. (CSUR) 53(3), 1–37 (2020). https://doi.org/10.1145/3381028. ISSN 0360-0300

    Article  Google Scholar 

  • Chen, P., Ding, H., Araki, J., Huang, R.: Explicitly capturing relations between entity mentions via graph neural networks for domain-specific named entity recognition. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, vol. 2: Short Papers, pp. 735–742 (2021)

    Google Scholar 

  • Chen, P., et al.: Hytrel: hypergraph-enhanced tabular data representation learning. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  • Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  • Dou, G., Zhou, Z., Qu, X.: Time majority voting, a pc-based eeg classifier for non-expert users. In: International Conference on Human-Computer Interaction, pp. 415–428. Springer, Heidelberg (2022)

    Google Scholar 

  • Farago, E., Law, A.J., Hajra, S.G., Chan, A.D.C.: Blink and saccade detection from forehead eeg. In: 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6. IEEE (2022)

    Google Scholar 

  • Fuhl, W., et al.: One step closer to eeg-based eye tracking. In: Proceedings of the 2023 Symposium on Eye Tracking Research and Applications, pp. 1–7 (2023)

    Google Scholar 

  • Gui, S., Song, S., Qin, R., Tang, Y.: Remote sensing object detection in the deep learning era-a review. Remote Sens. 16(2), 327 (2024)

    Article  Google Scholar 

  • Ingolfsson, T.M., et al.: Eeg-tcnet: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE (2020)

    Google Scholar 

  • Jiang, C., Hui, B., Liu, B., Yan, D.: Successfully applying lottery ticket hypothesis to diffusion model. arXiv preprint arXiv:2310.18823 (2023)

  • Kastrati, A., Plomecka, M.B., Küchler, J., Langer, N., Wattenhofer, R.: Electrode clustering and bandpass analysis of eeg data for gaze estimation. In: Annual Conference on Neural Information Processing Systems, pp. 50–65. PMLR (2023)

    Google Scholar 

  • Kastrati, A., et al.: Eegeyenet: a simultaneous electroencephalography and eye-tracking dataset and benchmark for eye movement prediction. arXiv preprint arXiv:2111.05100 (2021)

  • Li, H., et al.: Spherehead: stable 3d full-head synthesis with spherical tri-plane representation. arXiv preprint arXiv:2404.05680 (2024)

  • Lu, Y., Sato, K., Wang, J.: Deep learning based multi-label image classification of protest activities. arXiv preprint arXiv:2301.04212 (2023a)

  • Lu, Y., Shen, M., Wang, H., Wang, X., van Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023b)

  • Yingzhou, L., Chen, T., Hao, N., Van Rechem, C., Chen, J., Tianfan, F.: Uncertainty quantification and interpretability for clinical trial approval prediction. Health Data Sci. 4, 0126 (2024)

    Article  Google Scholar 

  • Ma, X.: Traffic performance evaluation using statistical and machine learning methods. PhD thesis, The University of Arizona (2022)

    Google Scholar 

  • Ma, X., Karimpour, A., Wu, Y.J.: Data-driven transfer learning framework for estimating on-ramp and off-ramp traffic flows. J. Intell. Transport. Syst. 1–14 (2024)

    Google Scholar 

  • Mishra, A.R., et al.: Signeeg v1. 0: Multimodal electroencephalography and signature database for biometric systems. bioRxiv, pp. 2023–09 (2023)

    Google Scholar 

  • Modesitt, E., Yang, R., Liu, Q.: Two heads are better than one: a bio-inspired method for improving classification on eeg-et data. In: International Conference on Human-Computer Interaction, pp. 382–390. Springer, Heidelberg (2023)

    Google Scholar 

  • Modesitt, E., Huang Wang, H., Yin, H., Lu, B.: Fusing pretrained vits with tcnet for enhanced eeg regression (2024)

    Google Scholar 

  • Murungi, N.K., Pham, M.V., Dai, X., Qu, X.: Trends in machine learning and electroencephalogram (eeg): a review for undergraduate researchers. In: International Conference on Human-Computer Interaction, pp. 426–443. Springer, Heidelberg (2023a)

    Google Scholar 

  • Murungi, N.K., Pham, M.V., Dai, X.C., Qu, X.: Empowering computer science students in electroencephalography (eeg) analysis: A review of machine learning algorithms for eeg datasets. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1728–1739 (2023b)

    Google Scholar 

  • Nakano, Y.I., Ishii, R.: Estimating user’s engagement from eye-gaze behaviors in human-agent conversations. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, IUI 2010, pp. 139-148. Association for Computing Machinery, New York (2010). ISBN 9781605585154. https://doi.org/10.1145/1719970.1719990

  • Pedroni, A., Bahreini, A., Langer, N.: Automagic: standardized preprocessing of big eeg data. Neuroimage 200, pp. 460–473 (2019). https://doi.org/10.1016/j.neuroimage.2019.06.046

  • Pion-Tonachini, L., Kreutz-Delgado, K., Makeig, S.: Iclabel: an automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 198, 181–197 (2019)

    Article  Google Scholar 

  • Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3

    Chapter  Google Scholar 

  • Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7

    Chapter  Google Scholar 

  • Rolff, T., Harms, H.M., Steinicke, F., Frintrop, S.: Gazetransformer: gaze forecasting for virtual reality using transformer networks. In: DAGM German Conference on Pattern Recognition, pp. 577–593. Springer, Heidelberg (2022)

    Google Scholar 

  • Skoglund, M.A., Andersen, M., Shiell, M.M., Keidser, G., Rank, M.L., Rotger-Griful, S.: Comparing in-ear eog for eye-movement estimation with eye-tracking: accuracy, calibration, and speech comprehension. Front. Neurosci. 16, 873201 (2022)

    Google Scholar 

  • Tan, J., Zhang, X., Shenghui, W., Song, Z., Chen, S., Huang, Y., Wang, Y.: Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain-machine interfaces. J. Neural Eng. 20(5), 056035 (2023)

    Article  Google Scholar 

  • Tan, J., Zhang, X., Wu, S., Wang, Y.: State-space model based inverse reinforcement learning for reward function estimation in brain-machine interfaces. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1–4. IEEE (2023b)

    Google Scholar 

  • Tang, Y., Song, S., Gui, S., Chao, W., Cheng, C., Qin, R.: Active and low-cost hyperspectral imaging for the spectral analysis of a low-light environment. Sensors 23(3), 1437 (2023)

    Article  Google Scholar 

  • Wang, J., Chang, R., Zhao, Z., Pahwa, R.S.: Robust detection, segmentation, and metrology of high bandwidth memory 3D scans using an improved semi-supervised deep learning approach. Sensors 23(12), 5470 (2023)

    Article  Google Scholar 

  • Wang, X., Wang, Z.: Cnn with self-attention in eeg classification. In: International Conference on Human-Computer Interaction, pp. 512–526. Springer, Heidelberg (2022)

    Google Scholar 

  • Wolf, L., et al.: A deep learning approach for the segmentation of electroencephalography data in eye tracking applications. arXiv preprint arXiv:2206.08672 (2022)

  • Xiang, B., Abdelmonsef, A.: Vector-based data improves left-right eye-tracking classifier performance after a covariate distributional shift. In: International Conference on Human-Computer Interaction, pp. 617–632. Springer (2022)

    Google Scholar 

  • Yang, R., Modesitt, E.: Vit2eeg: leveraging hybrid pretrained vision transformers for eeg data. arXiv preprint arXiv:2308.00454 (2023)

  • Yi, L., Qu, X.: Attention-based cnn capturing eeg recording’s average voltage and local change. In: Artificial Intelligence in HCI: 3rd International Conference, AI-HCI 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, 26 June–1 July 2022, Proceedings, pp. 448–459. Springer, Heidelberg (2022)

    Google Scholar 

  • Yunoki, I., Berreby, G., D’Andrea, N., Lu, Y., Qu, X.: Exploring ai music generation: a review of deep learning algorithms and datasets for undergraduate researchers. In: International Conference on Human-Computer Interaction, pp. 102–116. Springer, Heidelberg (2023)

    Google Scholar 

  • Zhang, Z., Tian, R., Sherony, R., Domeyer, J., Ding, Z.: Attention-based interrelation modeling for explainable automated driving. IEEE Trans. Intell. Veh. 8(2), 1564–1573 (2022)

    Article  Google Scholar 

  • Zhang, Z., Tian, R., Ding, Z.: Trep: transformer-based evidential prediction for pedestrian intention with uncertainty. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 3534–3542 (2023)

    Google Scholar 

  • Zhao, H., Du, H., Yang, S., Yao, F.: Rec-rn: user representations learning over the knowledge graph for recommendation systems. In: 2022 4th International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), pp. 228–233. IEEE (2022a)

    Google Scholar 

  • Zhao, S., et al.: Deep learning based cetsa feature prediction cross multiple cell lines with latent space representation. Sci. Rep. 14(1), 1878 (2024)

    Google Scholar 

  • Zhao, Z., et al.: Le-uda: label-efficient unsupervised domain adaptation for medical image segmentation. IEEE Trans. Med. Imaging 42(3), 633–646 (2022b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Utoft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Dou, J., Utoft, S. (2025). Refining Human-Data Interaction: Advanced Techniques for EEGEyeNet Dataset Precision. In: Kurosu, M., Hashizume, A., Mori, H., Asahi, Y., Schmorrow, D.D., Fidopiastis, C.M. (eds) HCI International 2024 – Late Breaking Papers. HCII 2024. Lecture Notes in Computer Science, vol 15374. Springer, Cham. https://doi.org/10.1007/978-3-031-76803-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76803-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76802-6

  • Online ISBN: 978-3-031-76803-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics