Abstract
The EEGEyeNet dataset merges EEG data with eye-tracking technology to advance cognitive research at the intersection of brain dynamics and eye movement. By developing machine learning models to predict eye movements from EEG data, we gain insights into perceptual, attentional, and cognitive processes. However, dataset outliers can compromise model integrity and accuracy. This paper explores the impact of outliers on the state-of-the-art model and highlights the benefits of outlier removal. By identifying and eliminating outliers, we improved the dataset to enhance model performance. Through the integration of advanced modeling techniques from EEGViT and EEGViT-TCNet, we set a new standard in eye-tracking precision, reducing the RMSE from 51.8 to 48.9. Despite removing only 15 outliers out of the 21,464 total data points, we reduced the RMSE by 2.9 mm. This study underscores the critical role of data refinement in advancing Brain-Computer Interfaces (BCI) and their applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, S., Bhat, G., Gumussoy, S., Ogras, U.: Transfer learning for human activity recognition using representational analysis of neural networks. ACM Trans. Comput. Healthc. 4(1), 1–21 (2023)
An, S., Tuncel, Y., Basaklar, T., Ogras, U.Y.: A survey of embedded machine learning for smart and sustainable healthcare applications. In: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing: Use Cases and Emerging Challenges, pp. 127–150. Springer, Heidelberg (2023b)
Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)
Boukerche, A., Zheng, L., Alfandi, O.: Outlier detection: methods, models, and classification. ACM Comput. Surv. (CSUR) 53(3), 1–37 (2020)
Boukerche, A., Zheng, L., Alfandi, O.: Outlier detection: methods, models, and classification. ACM Comput. Surv. (CSUR) 53(3), 1–37 (2020). https://doi.org/10.1145/3381028. ISSN 0360-0300
Chen, P., Ding, H., Araki, J., Huang, R.: Explicitly capturing relations between entity mentions via graph neural networks for domain-specific named entity recognition. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, vol. 2: Short Papers, pp. 735–742 (2021)
Chen, P., et al.: Hytrel: hypergraph-enhanced tabular data representation learning. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Dou, G., Zhou, Z., Qu, X.: Time majority voting, a pc-based eeg classifier for non-expert users. In: International Conference on Human-Computer Interaction, pp. 415–428. Springer, Heidelberg (2022)
Farago, E., Law, A.J., Hajra, S.G., Chan, A.D.C.: Blink and saccade detection from forehead eeg. In: 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6. IEEE (2022)
Fuhl, W., et al.: One step closer to eeg-based eye tracking. In: Proceedings of the 2023 Symposium on Eye Tracking Research and Applications, pp. 1–7 (2023)
Gui, S., Song, S., Qin, R., Tang, Y.: Remote sensing object detection in the deep learning era-a review. Remote Sens. 16(2), 327 (2024)
Ingolfsson, T.M., et al.: Eeg-tcnet: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE (2020)
Jiang, C., Hui, B., Liu, B., Yan, D.: Successfully applying lottery ticket hypothesis to diffusion model. arXiv preprint arXiv:2310.18823 (2023)
Kastrati, A., Plomecka, M.B., Küchler, J., Langer, N., Wattenhofer, R.: Electrode clustering and bandpass analysis of eeg data for gaze estimation. In: Annual Conference on Neural Information Processing Systems, pp. 50–65. PMLR (2023)
Kastrati, A., et al.: Eegeyenet: a simultaneous electroencephalography and eye-tracking dataset and benchmark for eye movement prediction. arXiv preprint arXiv:2111.05100 (2021)
Li, H., et al.: Spherehead: stable 3d full-head synthesis with spherical tri-plane representation. arXiv preprint arXiv:2404.05680 (2024)
Lu, Y., Sato, K., Wang, J.: Deep learning based multi-label image classification of protest activities. arXiv preprint arXiv:2301.04212 (2023a)
Lu, Y., Shen, M., Wang, H., Wang, X., van Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023b)
Yingzhou, L., Chen, T., Hao, N., Van Rechem, C., Chen, J., Tianfan, F.: Uncertainty quantification and interpretability for clinical trial approval prediction. Health Data Sci. 4, 0126 (2024)
Ma, X.: Traffic performance evaluation using statistical and machine learning methods. PhD thesis, The University of Arizona (2022)
Ma, X., Karimpour, A., Wu, Y.J.: Data-driven transfer learning framework for estimating on-ramp and off-ramp traffic flows. J. Intell. Transport. Syst. 1–14 (2024)
Mishra, A.R., et al.: Signeeg v1. 0: Multimodal electroencephalography and signature database for biometric systems. bioRxiv, pp. 2023–09 (2023)
Modesitt, E., Yang, R., Liu, Q.: Two heads are better than one: a bio-inspired method for improving classification on eeg-et data. In: International Conference on Human-Computer Interaction, pp. 382–390. Springer, Heidelberg (2023)
Modesitt, E., Huang Wang, H., Yin, H., Lu, B.: Fusing pretrained vits with tcnet for enhanced eeg regression (2024)
Murungi, N.K., Pham, M.V., Dai, X., Qu, X.: Trends in machine learning and electroencephalogram (eeg): a review for undergraduate researchers. In: International Conference on Human-Computer Interaction, pp. 426–443. Springer, Heidelberg (2023a)
Murungi, N.K., Pham, M.V., Dai, X.C., Qu, X.: Empowering computer science students in electroencephalography (eeg) analysis: A review of machine learning algorithms for eeg datasets. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1728–1739 (2023b)
Nakano, Y.I., Ishii, R.: Estimating user’s engagement from eye-gaze behaviors in human-agent conversations. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, IUI 2010, pp. 139-148. Association for Computing Machinery, New York (2010). ISBN 9781605585154. https://doi.org/10.1145/1719970.1719990
Pedroni, A., Bahreini, A., Langer, N.: Automagic: standardized preprocessing of big eeg data. Neuroimage 200, pp. 460–473 (2019). https://doi.org/10.1016/j.neuroimage.2019.06.046
Pion-Tonachini, L., Kreutz-Delgado, K., Makeig, S.: Iclabel: an automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 198, 181–197 (2019)
Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3
Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7
Rolff, T., Harms, H.M., Steinicke, F., Frintrop, S.: Gazetransformer: gaze forecasting for virtual reality using transformer networks. In: DAGM German Conference on Pattern Recognition, pp. 577–593. Springer, Heidelberg (2022)
Skoglund, M.A., Andersen, M., Shiell, M.M., Keidser, G., Rank, M.L., Rotger-Griful, S.: Comparing in-ear eog for eye-movement estimation with eye-tracking: accuracy, calibration, and speech comprehension. Front. Neurosci. 16, 873201 (2022)
Tan, J., Zhang, X., Shenghui, W., Song, Z., Chen, S., Huang, Y., Wang, Y.: Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain-machine interfaces. J. Neural Eng. 20(5), 056035 (2023)
Tan, J., Zhang, X., Wu, S., Wang, Y.: State-space model based inverse reinforcement learning for reward function estimation in brain-machine interfaces. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1–4. IEEE (2023b)
Tang, Y., Song, S., Gui, S., Chao, W., Cheng, C., Qin, R.: Active and low-cost hyperspectral imaging for the spectral analysis of a low-light environment. Sensors 23(3), 1437 (2023)
Wang, J., Chang, R., Zhao, Z., Pahwa, R.S.: Robust detection, segmentation, and metrology of high bandwidth memory 3D scans using an improved semi-supervised deep learning approach. Sensors 23(12), 5470 (2023)
Wang, X., Wang, Z.: Cnn with self-attention in eeg classification. In: International Conference on Human-Computer Interaction, pp. 512–526. Springer, Heidelberg (2022)
Wolf, L., et al.: A deep learning approach for the segmentation of electroencephalography data in eye tracking applications. arXiv preprint arXiv:2206.08672 (2022)
Xiang, B., Abdelmonsef, A.: Vector-based data improves left-right eye-tracking classifier performance after a covariate distributional shift. In: International Conference on Human-Computer Interaction, pp. 617–632. Springer (2022)
Yang, R., Modesitt, E.: Vit2eeg: leveraging hybrid pretrained vision transformers for eeg data. arXiv preprint arXiv:2308.00454 (2023)
Yi, L., Qu, X.: Attention-based cnn capturing eeg recording’s average voltage and local change. In: Artificial Intelligence in HCI: 3rd International Conference, AI-HCI 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, 26 June–1 July 2022, Proceedings, pp. 448–459. Springer, Heidelberg (2022)
Yunoki, I., Berreby, G., D’Andrea, N., Lu, Y., Qu, X.: Exploring ai music generation: a review of deep learning algorithms and datasets for undergraduate researchers. In: International Conference on Human-Computer Interaction, pp. 102–116. Springer, Heidelberg (2023)
Zhang, Z., Tian, R., Sherony, R., Domeyer, J., Ding, Z.: Attention-based interrelation modeling for explainable automated driving. IEEE Trans. Intell. Veh. 8(2), 1564–1573 (2022)
Zhang, Z., Tian, R., Ding, Z.: Trep: transformer-based evidential prediction for pedestrian intention with uncertainty. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 3534–3542 (2023)
Zhao, H., Du, H., Yang, S., Yao, F.: Rec-rn: user representations learning over the knowledge graph for recommendation systems. In: 2022 4th International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), pp. 228–233. IEEE (2022a)
Zhao, S., et al.: Deep learning based cetsa feature prediction cross multiple cell lines with latent space representation. Sci. Rep. 14(1), 1878 (2024)
Zhao, Z., et al.: Le-uda: label-efficient unsupervised domain adaptation for medical image segmentation. IEEE Trans. Med. Imaging 42(3), 633–646 (2022b)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, J., Dou, J., Utoft, S. (2025). Refining Human-Data Interaction: Advanced Techniques for EEGEyeNet Dataset Precision. In: Kurosu, M., Hashizume, A., Mori, H., Asahi, Y., Schmorrow, D.D., Fidopiastis, C.M. (eds) HCI International 2024 – Late Breaking Papers. HCII 2024. Lecture Notes in Computer Science, vol 15374. Springer, Cham. https://doi.org/10.1007/978-3-031-76803-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-76803-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76802-6
Online ISBN: 978-3-031-76803-3
eBook Packages: Computer ScienceComputer Science (R0)