[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimizing Effort and Cost Estimation: Model Implementation Using Artificial Neural Networks and Taguchi’s Orthogonal Vector Plans

  • Chapter
  • First Online:
Recent Advances in Artificial Intelligence in Cost Estimation in Project Management

Abstract

Part 2 of this book consists of one large chapter focused on optimizing effort and cost estimation through Artificial Neural Networks (ANN) and Taguchi’s Orthogonal Vector Plans, which has been the main area of our exploration and research over the last decade. The chapter presents a novel methodology that enhances conventional models like COCOMO2000, COSMIC FFP, and UCP, improving their accuracy and efficiency. Through detailed analysis and comparisons, it demonstrates how AI-driven techniques and advanced optimization methods lead to more precise and scalable software project estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A Guide to the Project Management Body of Knowledge (PMBOK Guide), 3rd edn. (Project Management Institute, Inc., 2004). ISBN: 1-930699-45-X

    Google Scholar 

  2. B.W. Boehm, C. Abts, S. Chulani, Software development cost estimation approaches—a survey. Ann. Softw. Eng. 10(1), 177–205 (2000)

    Article  Google Scholar 

  3. https://www.immagic.com/eLibrary/ARCHIVES/GENERAL/GENREF/ChaosManifest_2011.pdf

  4. https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf

  5. M. Ayat et al., Current trends analysis and prioritization of success factors: a systematic literature review of ICT projects. Int. J. Manag. Proj. Bus. 14(3), 652–679 (2021)

    Article  Google Scholar 

  6. https://www.standishgroup.com/

  7. A. Stoica, J. Blosiu, Neural learning using orthogonal arrays. Adv. Intell. Syst. 41, 418 (1997)

    Google Scholar 

  8. J.F. Khaw, B. Lim, L.E. Lim, Optimal design of neural networks using the Taguchi method. Neurocomputing 7(3), 225–245 (1995)

    Article  Google Scholar 

  9. A. BaniMustafa, Predicting software effort estimation using machine learning techniques, in 8th International Conference on Computer Science and Information Technology (CSIT) (IEEE, 2018), pp. 249–256

    Google Scholar 

  10. P.S. Kumar et al., Advancement from neural networks to deep learning in software effort estimation: perspective of two decades. Comput. Sci. Rev. 28(11), 100288 (2020)

    Article  MathSciNet  Google Scholar 

  11. P.S. Kumar, H. Behera, Estimating software effort using neural network: an experimental investigation, in Computational Intelligence in Pattern Recognition, Proceedings of CIPR (Springer, Heidelberg, 2020), pp. 165–180

    Google Scholar 

  12. P.S. Kumar, H. Behera, Role of soft computing techniques in software effort estimation: an analytical study, in Computational Intelligence in Pattern Recognition. Advances in Intelligent Systems and Computing (Springer, Heidelberg, 2020), pp. 807–831

    Google Scholar 

  13. J. Popović, Enhancing Methods for Effort Estimation in Software Projects. Doctoral dissertation, University of Belgrade, School of Electrical Engineering, Belgrade, Serbia (2016)

    Google Scholar 

  14. D.S. Cruzes, T. Dybå, Research synthesis in software engineering: a tertiary study. Inf. Softw. Technol. 53(5), 440–455 (2011)

    Article  Google Scholar 

  15. P. Pandey, Analysis of the techniques for software cost estimation, in 3rd International Conference on Advanced Computing and Communication Technologies (ACCT) (IEEE, 2013), pp. 16–19.

    Google Scholar 

  16. J.J. Ryan et al., Quantifying information security risks using expert judgment elicitation. Comput. Oper. Res. 39(4), 774–784 (2012)

    Article  MathSciNet  Google Scholar 

  17. J.G. Borade, V.R. Khalkar, Software project effort and cost estimation techniques. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(8), 730–739 (2013)

    Google Scholar 

  18. O. Fedotova, L. Teixeira, H. Alvelos, Software effort estimation with multiple linear regression: review and practical application. J. Inf. Sci. Eng. 29(5), 925–945 (2013)

    Google Scholar 

  19. A.J. Albrecht, J.E. Gaffney, Software function, source lines of code, and development effort prediction: a software science validation. IEEE Trans. Software Eng. 6, 639–648 (1983)

    Article  Google Scholar 

  20. S. Diev, Use cases modeling and software estimation: applying use case points. ACM SIGSOFT Softw. Eng. Notes 31(6), 1–4 (2006)

    Google Scholar 

  21. https://www.ifpug.org/about-function-point-analysis/?lang=de

  22. C.R. Symons, Function point analysis: difficulties and improvements. IEEE Trans. Softw. Eng. 14(1), 2–11 (1988)

    Article  Google Scholar 

  23. N. Board, Software measurement in the Netherlands—the 25th anniversary of Nesma, in 2014 Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement (IEEE, 2014), pp. 125–126.

    Google Scholar 

  24. https://www.totalmetrics.com/function-point-resources/downloads/COSMIC-Versus-IFPUG-Similaritiesand-Differences.pdf

  25. R. Meli et al., On the applicability of COSMIC-FFP for measuring software throughout its life cycle, in Proceedings of the 11th European Software Control and Metrics Conference (Springer, Heidelberg, 2000), pp. 18–20.

    Google Scholar 

  26. L.C. Briand, K. El Emam, F. Bomarius. COBRA: a hybrid method for software cost estimation, benchmarking, and risk, in Proceedings of the 20th International Conference on Software Engineering (IEEE, 1998), pp. 390–399

    Google Scholar 

  27. P. Pospieszny, B. Czarnacka-Chrobot, A. Kobylinski, An effective approach for software project effort and duration estimation with machine learning algorithms. J. Syst. Softw. 137, 184–196 (2018)

    Google Scholar 

  28. M. Thrun, F. Pape, A. Ultsch, Interactive machine learning tool for clustering\in visual analytics, in 7th International Conference on Data Science and Advanced Analytics (DSAA) (IEEE, 2020), pp. 479–487.

    Google Scholar 

  29. T. Tajti, Fuzzification of training data class membership binary values for neural network algorithms. Annales Mathematicae et Informaticae, Eszterházy Károly Egyetem Líceum Kiadó 52, 217–228 (2020)

    MathSciNet  Google Scholar 

  30. T.D. Khang et al., Fuzzy C-means clustering algorithm with multiple fuzzification coefficients. Algorithms 13(7), 158 (2020)

    Article  MathSciNet  Google Scholar 

  31. P. Ramachandran, B. Zoph, Q.V. Le, Searching for Activation Functions. arXiv preprint arXiv:1710.05941 (2017)

  32. C. Nwankpa et al., Activation Functions: Comparison of Trends in Practice and Research for Deep Learning. arXiv preprint arXiv:1811.03378 (2018)

  33. L.H. Chen, S.H. Nien, A new approach to formulate fuzzy regression models. Appl. Soft Comput. 86(01), 105915 (2020)

    Article  Google Scholar 

  34. M. van Smeden et al., Sample size for binary logistic prediction models: beyond events per variable criteria. Stat. Methods Med. Res. 28(8), 2455–2474 (2019)

    Article  MathSciNet  Google Scholar 

  35. M. Nilashi et al., A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques. Comput. Ind. Eng. 109, 357–368 (2017)

    Article  Google Scholar 

  36. S. Scalabrino et al., Automatically assessing code understandability: how far are we? in 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE) (IEEE, 2017), pp. 417–427

    Google Scholar 

  37. V.G. Sychenko, D.V. Mironov, Development of a mathematical model of the generalized diagnostic indicator on the basis of full factorial experiment. Arch. Transp. 43 (2017)

    Google Scholar 

  38. B. Durakovic, Design of experiments application, concepts, examples: state of the art. Periodicals Eng. Nat. Sci. (PEN) 5(3), 421–439 (2017)

    MathSciNet  Google Scholar 

  39. J. Nunez Ares, P. Goos, An integer linear programing approach to find trend-robust run orders of experimental designs. J. Qual. Technol. 51(1), 37–50 (2019)

    Google Scholar 

  40. S. Elfwing, E. Uchibe, K. Doya, Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)

    Article  Google Scholar 

  41. S. Sharma, S. Sharma, Activation functions in neural networks. Towards Data Sci. 6(12), 310–316 (2017)

    Google Scholar 

  42. G. Mourgias-Alexandris et al., An all-optical neuron with sigmoid activation function. Opt. Express 27(7), 9620–9630 (2019)

    Article  Google Scholar 

  43. L.H. Putnam, W. Myers, Measures for Excellence: Reliable Software on Time, Within Budget. Prentice Hall Professional Technical Reference, 1st edn (1991). ISBN-10: ‏0135676940

    Google Scholar 

  44. D.D. Galorath, M.W. Evans, Software Sizing, Estimation, and Risk Management: When Performance is Measured Performance Improves. Auerbach Publications, 1st edn (2006). ISBN-10: 0849335930

    Google Scholar 

  45. B. Boehm et al., Software Engineering Economics, New York (1981), p. 197

    Google Scholar 

  46. B.W. Boehm et al., Software Cost Estimation with COCOMO II, 1st edn (Prentice Hall Press, 2009)

    Google Scholar 

  47. A.A. Fadhil, R.G. Alsarraj, A.M. Altaie, Software cost estimation based on dolphin algorithm. IEEE Access 8, 75279–75287 (2020)

    Article  Google Scholar 

  48. B.W. Boehm, Safe and simple software cost analysis. IEEE Softw. 17(5), 14–17 (2000)

    Article  Google Scholar 

  49. G. Kumar, P.K. Bhatia, Automation of software cost estimation using neural network technique. Int. J. Comput. Appl. 98(20), 11–17 (2014)

    Google Scholar 

  50. S. Goyal, A. Parashar, Machine learning application to improve cocomo model using neural networks. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 3, 35–51 (2018)

    Google Scholar 

  51. M. Nandini, P. Bhargavi, G.R. Sekhar, Face recognition using neural networks. Int. J. Sci. Res. Publ. 3(3), 1–5 (2013)

    Google Scholar 

  52. S. Mukherjee, R.K. Malu, Optimization of project effort estimate using neural network, in 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies (IEEE, 2014), pp. 406–410

    Google Scholar 

  53. N. Couellan, Probabilistic robustness estimates for feed-forward neural networks. Neural Netw. 142, 138–147 (2021)

    Article  Google Scholar 

  54. M. Pandey, R. Litoriya, P. Pandey, Validation of existing software effort estimation techniques in context with mobile software applications. Wireless Pers. Commun. 110(4), 1659–1677 (2020)

    Article  Google Scholar 

  55. G. Boetticher, An of metric contribution in the construction of a neural network-based effort estimator, in Second International Workshop on Soft Computing Applied to Software Engineering, Enschade, NL (2001)

    Google Scholar 

  56. K. Kamaraj, C. Arvind, K. Srihari, A weight optimized artificial neural network for automated software test oracle. Soft. Comput. 24(17), 13501–13511 (2020)

    Article  Google Scholar 

  57. M. Albarqi, R. Alsulami, J. Graham, Automated data processing of neutron depth profiling spectra using an artificial neural network. Nucl. Instrum. Methods Phys. Res. Sect. A 953, 163217 (2020)

    Article  Google Scholar 

  58. M.A. Hamada, Neural network estimation model to optimize timing and schedule of software projects, in 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST) (IEEE, 2021), pp. 1–7

    Google Scholar 

  59. C.L.C. Roxas, Modeling road construction project cost in the Philippines using the artificial neural network approach, in 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM) (IEEE, 2019), pp. 1–5

    Google Scholar 

  60. C. Kemerer, An empirical validation of software cost estimation models. Commun. ACM 30(5), 416–429 (1987)

    Article  Google Scholar 

  61. V.T. Ho, A. Abran, A framework for automatic function point counting from source code, in International Workshop on Software Measurement (IWSM’99), p. 1999

    Google Scholar 

  62. S.J. Huang, N.H. Chiu, Optimization of analogy weights by genetic algorithm for software effort estimation. Inf. Softw. Technol. 48(11), 1034–1045 (2006)

    Article  Google Scholar 

  63. C. Symons, Software Sizing and Estimating, Mk II Function Point Analysis (Wiley, Chichester, 1991)

    Google Scholar 

  64. https://cosmic-sizing.org/wp-content/uploads/2015/07/Measurement_Patterns_Guideline_v1.01-1.pdf

  65. M. Salmanoglu, T. Hacaloglu, O. Demirors, Effort estimation for agile software development: comparative case studies using COSMIC functional size measurement and story points, in Proceedings of the 27th International Workshop on Software Measurement and 12th International Conference on Software Process and Product Measurement (IWSM Mensura’17) (Association for Computing Machinery, New York, USA), pp. 41–49 (2017)

    Google Scholar 

  66. I. Hussain, L. Kosseim, O. Ormandjieva, Approximation of COSMIC functional size to support early effort estimation in Agile. Data Knowl. Eng. 85, 2–14 (2013)

    Article  Google Scholar 

  67. Z. Sakhrawi, A. Sellami, N. Bouassida, Investigating the impact of functional size measurement on predicting software enhancement effort using correlation-based feature selection algorithm and SVR method, in Reuse in Emerging Software Engineering Practices, ed. by S. Ben Sassi, S. Ducasse, H. Mili. ICSR 2020. Lecture Notes in Computer Science, 12541 (Springer, Cham, 2020)

    Google Scholar 

  68. T. Fehlmann, L. Santillo, From story points to cosmic function points in agile software development—a six sigma perspective, in Metrikon-Software Metrik Kongress (2010), p. 24

    Google Scholar 

  69. M. Ochodek, S. Kopczyńska, M. Staron, Deep learning model for end-to-end approximation of COSMIC functional size based on use-case names. Inf. Softw. Technol. 123(07), 106310 (2020)

    Article  Google Scholar 

  70. S. Bagriyanik, A. Karahoca, Using data mining to identify COSMIC function point measurement competence. Int. J. Electrical Comput. Eng. 8(6), 5253 (2018)

    Google Scholar 

  71. W. Xia et al., A new calibration for function point complexity weights. Inf. Softw. Technol. 50(7–8), 670–683 (2008)

    Article  Google Scholar 

  72. W. Xia, D. Ho, L.F. Capretz, A Neuro-Fuzzy Model for Function Point Calibration. arXiv preprint, arXiv:1507.06934 (2015)

  73. M. Shepperd, C. Schofield, B. Kitchenham, Effort estimation using analogy, in Proceedings of IEEE 18th International Conference on Software Engineering (IEEE, 1996), pp. 170–178.

    Google Scholar 

  74. E.R. Carroll, Estimating software based on use case points, in Companion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, San Diego, CA, USA (2005), pp. 257–265

    Google Scholar 

  75. A.B. Nassif, L.F. Capretz, D. Ho, Enhancing use case points estimation method using soft computing techniques. J. Global Res. Comput. Sci. 1(4), 12–21 (2010)

    Google Scholar 

  76. A.B. Nassif, Software Size and Effort Estimation from Use Case Diagrams Using Regression and Soft Computing Models. Doctoral dissertation, Western University, London, Ontario, Canada (2012)

    Google Scholar 

  77. M. Azzeh, Fuzzy model tree for early effort estimation machine learning and applications, in 12th International Conference on Machine Learning and Applications, Miami, Florida, USA (IEEE, 2013), pp. 117–121

    Google Scholar 

  78. T. Urbanek et al., Using analytical programming and UCP method for effort estimation. Modern Trends Techn. Comput. Sci. Adv. Intell. Syst. Comput. 285, 571–581 (2014)

    Article  Google Scholar 

  79. A. Kaur, K. Kaur, Effort estimation for mobile applications using use case point (UCP), in Smart Innovations in Communication and Computational Sciences (Springer, Singapore, 2019), pp. 163–172

    Google Scholar 

  80. Z.C. Ani, S. Basri, A. Sarlan, A reusability of UCP-based effort estimation framework using object-oriented approach. J. Telecommun. Electronic Comput. Eng. (JTEC) 9(3–5), 111–114 (2017)

    Google Scholar 

  81. Y. Mahmood, N. Kama, A. Azmi, A systematic review of studies on use case points and expert-based estimation of software development effort. J. Softw. Evol. Process 32(7), e2245 (2020)

    Article  Google Scholar 

  82. K.K. Gebretsadik, W.T. Sewunetie, Designing machine learning method for software project effort prediction. Comput. Sci. Eng. 9(1), 6–11 (2019)

    Google Scholar 

  83. R. Alves, P. Valente, N.J. Nunes, Improving software effort estimation with human-centric models: a comparison of UCP and iUCP accuracy, in Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (2013), pp. 287–296

    Google Scholar 

  84. http://promise.site.uottawa.ca/SERepository/

  85. M.A. Shah, Ensembling artificial bee colony with analogy-based estimation to improve software development effort prediction. IEEE Access 8, 58402–58415 (2020)

    Article  Google Scholar 

  86. https://www.isbsg.org/software-project-data/

  87. https://data.mendeley.com/datasets/2rfkjhx3cn/1

  88. https://www.cs.cmu.edu/~jhm/DMS%202011/Presentations/Cohn%20%20Estimating%20with%20eUse%20Case%20Points_v2.pdf

  89. D. Rankovic et al., Convergence rate of Artificial Neural Networks in software development projects. Inf. Softw. Technol. J. 138(10) (2021)

    Google Scholar 

  90. L. Ghosh, S. Saha, A. Konar, Decoding emotional changes of android-gamers using a fused Type-2 fuzzy deep neural network. Comput. Hum. Behav. 116, 106640 (2021)

    Article  Google Scholar 

  91. A.B. Nassif et al., Software development effort estimation using regression fuzzy models, in Computational Intelligence and Neuroscience (2019)

    Google Scholar 

  92. N. Rankovic et al., A new approach to software effort estimation using different Artificial Neural Network architectures and Taguchi Orthogonal Arrays. IEEE Access 9, 26926–26936 (2021)

    Google Scholar 

  93. N. Rankovic et al., Improved effort and cost estimation model using Artificial Neural Networks and Taguchi method with different activation functions. Entropy 23(7), 854 (2021)

    Article  MathSciNet  Google Scholar 

  94. M.V. Boldin, On the power of Pearson’s test under local alternatives in autoregression with outliers. Math. Methods Statist. 28(1), 57–65 (2019)

    Article  MathSciNet  Google Scholar 

  95. D. Blum, H. Holling, Spearman’s law of diminishing returns. A meta-analysis. Intelligence 65, 60–66 (2017)

    Article  Google Scholar 

  96. W. Li, A new approach to solve uncertain multidisciplinary design optimization based on conditional value at risk. IEEE Trans. Autom. Sci. Eng. 18(1), 356–368 (2020)

    Article  Google Scholar 

  97. L. Qiao, Deep learning based software defect prediction. Neurocomputing 385, 100–110 (2020)

    Article  Google Scholar 

  98. P. Manali et al., Long-lead prediction of ENSO modoki index using machine learning algorithms. Sci. Rep. 10(1), 1–13 (2020)

    Google Scholar 

  99. H. Liang, Dynamic evaluation of drilling leakage risk based on fuzzy theory and PSO-SVR algorithm. Futur. Gener. Comput. Syst. 95, 454–466 (2019)

    Article  Google Scholar 

  100. Y. Liu, L. Wang, K. Gu, A support vector regression (SVR)-based method for dynamic load identification using heterogeneous responses under interval uncertainties. Appl. Soft Comput. 107599 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Ivanovic .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rankovic, N., Ranković, D., Ivanovic, M., Lazić, L. (2024). Optimizing Effort and Cost Estimation: Model Implementation Using Artificial Neural Networks and Taguchi’s Orthogonal Vector Plans. In: Recent Advances in Artificial Intelligence in Cost Estimation in Project Management. Artificial Intelligence-Enhanced Software and Systems Engineering, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-031-76572-8_9

Download citation

Publish with us

Policies and ethics