[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Extended Boltzmann Machine Generative Model

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2024)

Abstract

The increase in computing power in recent years has brought generative models and the use of synthetic data back to the fore to solve a variety of previously unsolved problems, in particular when fields are subject to constraints linked to the sensitivity of the information processed. This article proposes a modified version of restricted Boltzmann machines (RBM), known as Bernoulli machines, to improve its ability to handle non-binary data without making the methodology more complex to understand and manipulate. To assess the performance of our algorithm, we compare it with various generative models that are well documented and have repeatedly proven their effectiveness in a variety of contexts. We also chose to use a large number of open source datasets with different types of features and different sizes in order the verify the generalization capacity and sclalability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bidaurrazaga, A., Pérez, A., Santana, R.: Structural restricted Boltzmann machine for image denoising and classification (2023)

    Google Scholar 

  2. Borisov, V., Broelemann, K., Kasneci, E., Kasneci, G.: DeepTLF: robust deep neural networks for heterogeneous tabular data. Int. J. Data Sci. Anal. 16(1), 85–100 (2023)

    Article  Google Scholar 

  3. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory 14(3), 462–467 (1968)

    Article  Google Scholar 

  4. Dankar, F.K., Ibrahim, M.K., Ismail, L.: A multi-dimensional evaluation of synthetic data generators. IEEE Access 10, 11147–11158 (2022)

    Article  Google Scholar 

  5. Fischer, A., Igel, C.: An introduction to restricted Boltzmann machines. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 14–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33275-3_2

    Chapter  Google Scholar 

  6. Fischer, A., Igel, C.: Training restricted Boltzmann machines: an introduction. Pattern Recogn. 47(1), 25–39 (2014)

    Article  Google Scholar 

  7. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  Google Scholar 

  8. Hinton, G.E., Sejnowski, T.J.: Optimal perceptual inference. In: The IEEE Conference on Computer Vision and Pattern Recognition, vol. 448, pp. 448–453. Citeseer (1983)

    Google Scholar 

  9. Knight, W.R.: A computer method for calculating Kendall’s tau with ungrouped data. J. Am. Stat. Assoc. 61(314), 436–439 (1966)

    Article  Google Scholar 

  10. Kondratyev, A., Schwarz, C.: The market generator. Available at SSRN 3384948 (2019)

    Google Scholar 

  11. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  12. Lailler, A., Cohen, S.: Improving market data generation with restricted Boltzmann machines. Available at SSRN 4020037 (2022)

    Google Scholar 

  13. Lezmi, E., Roche, J., Roncalli, T., Xu, J.: Improving the robustness of trading strategy backtesting with Boltzmann machines and generative adversarial networks. arXiv preprint arXiv:2007.04838 (2020)

  14. Lichman, M.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2013). UCI Machine Learning Repository. http://archive.ics.uci.edu/ml. http://archive.ics.uci.edu/ml

  15. Lilliefors, H.W.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)

    Article  Google Scholar 

  16. Lin, W.C., Tsai, C.F.: Missing value imputation: a review and analysis of the literature (2006–2017). Artif. Intell. Rev. 53, 1487–1509 (2020)

    Article  Google Scholar 

  17. Miao, J., Wang, J., Zhang, D., Miao, Q.: Improved generative adversarial network for rotating component fault diagnosis in scenarios with extremely limited data. IEEE Trans. Instrum. Meas. 71, 1–13 (2021)

    Google Scholar 

  18. Montanez, A., et al.: SDV: an open source library for synthetic data generation. Ph.D. thesis, Massachusetts Institute of Technology (2018)

    Google Scholar 

  19. Patki, N., Wedge, R., Veeramachaneni, K.: The synthetic data vault. In: IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 399–410 (2016). https://doi.org/10.1109/DSAA.2016.49

  20. Sanyal, A., Kusner, M., Gascon, A., Kanade, V.: TAPAS: tricks to accelerate (encrypted) prediction as a service. In: The 35th International Conference on Machine Learning, pp. 4490–4499. PMLR (2018)

    Google Scholar 

  21. Sobieszczanski-Sobieski, J.: Overcoming the Bellman’s curse of dimensionality in large optimization problems. In: Pan American Congress of Applied Mechanics. No. NAS 1.15: 102662 (1990)

    Google Scholar 

  22. Xu, X., Yoneda, M.: Multitask air-quality prediction based on LSTM-autoencoder model. IEEE Trans. Cybern. 51(5), 2577–2586 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lancelot Tullio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tullio, L., Rifqi, M. (2025). Extended Boltzmann Machine Generative Model. In: Destercke, S., Martinez, M.V., Sanfilippo, G. (eds) Scalable Uncertainty Management. SUM 2024. Lecture Notes in Computer Science(), vol 15350. Springer, Cham. https://doi.org/10.1007/978-3-031-76235-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-76235-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-76234-5

  • Online ISBN: 978-3-031-76235-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics