Abstract
This chapter introduces Bayesian methods, which are also called Bayesian algorithms, Bayesian machine learning, and probabilistic machine learning in the literature. We will first provide a general background for statistics-based machine learning, which contains statistical inference adopted by both frequentists and Bayesians. The frequentists’ inference method, i.e., maximum likelihood estimation, is used by many other machine learning methods like artificial neural networks, while Bayesians’ method, i.e., Bayesian estimation, is adopted as the basis of Bayesian methods in this chapter. Then, major parametric Bayesian methods, e.g., naive Bayes classifier, Bayesian networks, and Markov processes, will be discussed. Next, one nonparametric Bayesian method, i.e., Gaussian process, will be introduced.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Bibliography
Accenture, How AI boosts industry profits and innovation. Technical report, Accenture (2017)
The AI Index Report 2022 (2022). https://aiindex.stanford.edu/ai-index-report-2022/. Accessed 07 July 2024
The AI Index Report 2024 (2024). https://aiindex.stanford.edu/report/. Accessed 07 July 2024
Artificial Intelligence (AI) Software Market Size, Report 2032 — precedenceresearch.com. https://www.precedenceresearch.com/artificial-intelligence-software-market. Accessed 07 Feb 2024
Critical reasons for crashes investigated in the national motor vehicle crash causation survey. Technical report (2023)
S. Singh, Critical reasons for crashes investigated in the national motor vehicle crash causation survey. Technical report (2015)
K. Abraham, D. Schwarcz, Courting disaster: the underappreciated risk of a cyber insurance catastrophe. Connecticut Insur. Law J. 27(2), 407–473 (2021)
M. Colagrossi, 10 golden age science fiction novels (2019). https://bigthink.com/high-culture/10-golden-age-science-fiction-novels/. Accessed 25 July 2024
W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)
A.M. Turing, Computing Machinery and Intelligence (Springer, Berlin, 2009)
S.H. Lavington, The Manchester Mark I and Atlas: a historical perspective. Commun. ACM 21(1), 4–12 (1978)
A.L. Samuel, Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959)
P. McCorduck, C. Cfe, Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence (AK Peters/CRC Press, Natick/Boca Raton, 2004)
J. Moor, The Dartmouth College artificial intelligence conference: the next fifty years. AI Mag. 27(4), 87–87 (2006)
M. Zemčík, A brief history of chatbots. DEStech Trans. Comput. Sci. Eng. 10, 14–18 (2019)
R. Ciesla, The Book of Chatbots: From ELIZA to ChatGPT (Springer Nature, Berlin, 2024)
M. Minsky, S.A. Papert, Perceptrons, Reissue of the 1988 Expanded Edition with a New Foreword by Léon Bottou: An Introduction to Computational Geometry (MIT Press, Cambridge, 2017)
D.A. Waterman, A Guide to Expert Systems (Addison-Wesley Longman Publishing Co., Inc., Boston, 1985)
E.A. Feigenbaum, P. McCorduck, The Fifth Generation (Pan Books, London, 1984)
D.A. Medler, A brief history of connectionism. Neural Comput. Surv. 1, 18–72 (1998)
R. Brooks, Flesh and Machines: How Robots Will Change Us (Vintage, New York City, 2003)
G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
R. Raina, A. Madhavan, A.Y. Ng, Large-scale deep unsupervised learning using graphics processors, in Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 873–880
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, Piscataway, 2009), pp. 248–255
X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings (2011), pp. 315–323
A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Proces. Syst. 25, 1–9 (2012)
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets. Adv. Neural Inf. Proces. Syst. 27, 1–9 (2014)
P.P. Ray, ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber-Phys. Syst. 3, 121–154 (2023)
TIOBE Index - TIOBE — tiobe.com. https://www.tiobe.com/tiobe-index/. Accessed 17 July 2024
T.E. Oliphant et al., Guide to NumPy, vol. 1 (Trelgol Publishing, USA, 2006)
S. Van Der Walt, S.C. Colbert, G. Varoquaux, The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)
P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020)
W. McKinney et al., pandas: a foundational python library for data analysis and statistics. Python High Perform. Sci. Comput. 14(9), 1–9 (2011)
J.D. Hunter, Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(03), 90–95 (2007)
M.L. Waskom, Seaborn: statistical data visualization. J. Open Source Software 6(60), 3021 (2021)
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., \(\{\)TensorFlow\(\}\): a system for \(\{\)Large-Scale\(\}\) machine learning, in 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) (2016), pp. 265–283
N. Ketkar, J. Moolayil, N. Ketkar, J. Moolayil, Introduction to PyTorch, in Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch (2021), pp. 27–91
N. Ketkar, N. Ketkar, Introduction to Keras, in Deep Learning with Python: A Hands-on Introduction (2017), pp. 97–111
G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba, OpenAI Gym. Preprint. arXiv:1606.01540 (2016)
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: convolutional architecture for fast feature embedding, in Proceedings of the 22nd ACM International Conference on Multimedia (2014), pp. 675–678
D.J. Higham, N.J. Higham, MATLAB Guide (SIAM, Philadelphia, 2016)
A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)
R. Tibshirani, Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B: Stat. Methodol. 58(1), 267–288 (1996)
D.W. Hosmer Jr, S. Lemeshow, R.X. Sturdivant, Applied Logistic Regression (John Wiley & Sons, Hoboken, 2013)
J.W. Hardin, J.M. Hilbe, Generalized Linear Models and Extensions (Stata Press, College Station, 2007)
A.J. Dobson, A.G. Barnett, An Introduction to Generalized Linear Models (Chapman and Hall/CRC, Boca Raton, 2018)
T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning (2008). https://projecteuclid.org/journals/annals-of-statistics/volume-36/issue-3/Kernel-methods-in-machine-learning/10.1214/009053607000000677.full
O.Z. Maimon, L. Rokach, Data Mining with Decision Trees: Theory and Applications, vol. 81 (World Scientific, Singapore, 2014)
J.R. Quinlan, Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
J.R. Quinlan, C4.5: Programs for Machine Learning (Elsevier, Amsterdam, 2014)
L. Breiman, Classification and Regression Trees (Routledge, Milton Park, 2017)
X. Ying, An overview of overfitting and its solutions, in Journal of Physics: Conference Series, vol. 1168 (IOP Publishing, Bristol, 2019), p. 022022
L.A. Breslow, D.W. Aha et al., Simplifying decision trees: a survey. Knowl. Eng. Rev. 12(1), 1–40 (1997)
C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20, 273–297 (1995)
J.-P. Vert, K. Tsuda, B. Schölkopf, A primer on kernel methods (2004). https://direct.mit.edu/books/edited-volume/3898/Kernel-Methods-in-Computational-Biology
V. Jakkula, Tutorial on support vector machine (SVM). School of EECS, Washington State University 37(2.5), 3 (2006)
J.C. Platt, Fast training of support vector machines using sequential minimal optimization (1998). https://www.researchgate.net/publication/234786663_Fast_Training_of_Support_Vector_Machines_Using_Sequential_Minimal_Optimization
M.A. Tanner, Tools for Statistical Inference, vol. 3 (Springer, Berlin, 1993)
N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)
G.I. Webb, J.R. Boughton, Z. Wang, Not so naive bayes: aggregating one-dependence estimators. Mach. Learn. 58, 5–24 (2005)
N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)
A. Ankan, A. Panda, pgmpy: Probabilistic graphical models using Python, in SciPy (Citeseer, 2015), pp. 6–11
S. Ghosal, A.W. van der Vaart, Fundamentals of Nonparametric Bayesian Inference, vol. 44 (Cambridge University Press, Cambridge, 2017)
E. Schulz, M. Speekenbrink, A. Krause, A tutorial on gaussian process regression: modelling, exploring, and exploiting functions. J. Math. Psychol. 85, 1–16 (2018)
D.J. Livingstone, Artificial Neural Networks: Methods and Applications, vol. 458 (Springer, Berlin, 2008)
T. Trappenberg, Fundamentals of Computational Neuroscience (OUP Oxford, Oxford, 2009)
D.A. Medler, A brief history of connectionism. Neural Comput. Surv. 1, 18–72 (1998)
F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)
H.J. Kelley, Gradient theory of optimal flight paths. ARS J. 30(10), 947–954 (1960)
S. Dreyfus, The numerical solution of variational problems. J. Math. Anal. Appl. 5(1), 30–45 (1962)
A.G. Ivakhnenko, V.G. Lapa et al., Cybernetic predicting devices, in Joint Publications Research Service (1966)
S. Linnainmaa, The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. PhD thesis, Master’s Thesis (in Finnish). University of Helsinki (1970)
A.G. Ivakhnenko, Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybernet. 4, 364–378 (1971)
K. Fukushima, Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)
J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)
P.J. Werbos, Applications of advances in nonlinear sensitivity analysis, in System Modeling and Optimization: Proceedings of the 10th IFIP Conference New York City, August 31–September 4, 1981 (Springer, Berlin, 2005), pp. 762–770
D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for boltzmann machines. Cognit. Sci. 9(1), 147–169 (1985)
D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel, Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Proces. Syst. 2, 396–404 (1989)
G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Sig. Syst. 2(4), 303–314 (1989)
S. Hochreiter, Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Universität München 91(1), 31 (1991)
S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., Mastering the game of Go without human knowledge. Nature 550(7676), 354–359 (2017)
X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings (2010), pp. 249–256
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. Preprint. arXiv:1409.1556 (2014)
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778
X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: an extremely efficient convolutional neural network for mobile devices, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 6848–6856
R. Girshick, Fast R-CNN, in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 1440–1448
S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intel. 39(6), 1137–1149 (2016)
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 779–788
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks. Preprint. arXiv:1609.02907 (2016)
F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)
Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S.Y. Philip, A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2020)
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need. Adv. Neural Inf. Proces. Syst. 30, 1–15 (2017)
O. Sagi, L. Rokach, Ensemble learning: a survey. Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery 8(4), e1249 (2018)
R. Polikar, Ensemble learning, in Ensemble Machine Learning: Methods and Applications (2012), pp. 1–34
B.V. Dasarathy, B.V. Sheela, A composite classifier system design: concepts and methodology. Proc. IEEE 67(5), 708–713 (1979)
B. Efron, Bootstrap methods: another look at the jackknife, in Breakthroughs in Statistics: Methodology and Distribution (Springer, Berlin, 1992), pp. 569–593
M. Kearns, Thoughts on hypothesis boosting. Unpublished Manuscript 45, 105 (1988)
M. Kearns, L. Valiant, Cryptographic limitations on learning boolean formulae and finite automata. J. ACM 41(1), 67–95 (1994)
R.E. Schapire, The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)
Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
L.K. Hansen, P. Salamon, Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intel. 12(10), 993–1001 (1990)
D.H. Wolpert, Stacked generalization. Neural Networks 5(2), 241–259 (1992)
L. Breiman, Bagging predictors. Mach. Learn. 24, 123–140 (1996)
Z. Kalal, J. Matas, K. Mikolajczyk, P-N learning: Bootstrapping binary classifiers by structural constraints, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, Piscataway, 2010), pp. 49–56
L. Deng, D. Yu, J. Platt, Scalable stacking and learning for building deep architectures, in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2012), pp. 2133–2136
T. Chen, C. Guestrin, XGboost: a scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 785–794
T. Hastie, R. Tibshirani, J.H. Friedman, J.H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2 (Springer, Berlin, 2009)
Y. Freund, R.E. Schapire et al., Experiments with a new boosting algorithm, in Machine Learning: Proceedings of the Thirteenth International Conference, vol. 96 (Citeseer, 1996), pp. 148–156
J.H. Friedman, Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). https://www.researchgate.net/publication/2424824_Greedy_Function_Approximation_A_Gradient_Boosting_Machine
Z. Ghahramani, Unsupervised learning, in Summer School on Machine Learning (Springer, Berlin, 2003), pp. 72–112
T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, R. Tibshirani, J. Friedman, Unsupervised learning, in The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2009), pp. 485–585
K. Kameshwaran, K. Malarvizhi, Survey on clustering techniques in data mining. Int. J. Comput. Sci. Inf. Technol. 5(2), 2272–2276 (2014)
J. MacQueen et al., Some methods for classification and analysis of multivariate observations, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, vol. 1 (1967), pp. 281–297
D. Arthur, S. Vassilvitskii, k-Means++: The advantages of careful seeding. Technical report. Stanford (2006)
Y. Cheng, Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intel. 17(8), 790–799 (1995)
M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., A density-based algorithm for discovering clusters in large spatial databases with noise, in KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, vol. 96 (1996), pp. 226–231
R.O. Duda, P.E. Hart et al., Pattern Classification and Scene Analysis, vol. 3 (Wiley, New York, 1973)
F. Murtagh, P. Contreras, Algorithms for hierarchical clustering: an overview. Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery 2(1), 86–97 (2012)
L. Van Der Maaten, E.O. Postma, H.J. Van Den Herik et al., Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(66–71), 13 (2009)
B. Venkatesh, J. Anuradha, A review of feature selection and its methods. Cybernet. Inf. Technol. 19(1), 3–26 (2019)
R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, J. Saeed, A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. J. Appl. Sci. Technol. Trends 1(1), 56–70 (2020)
K. Pearson, LIII. on lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)
R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936)
J. Hérault, Détection de grandeurs primitives dans un message composite par une architecture de calcul neuromimétique en apprentissage non supervisé, in Proceedings of GRETSI (1985), pp. 1017–1020
J.B. Tenenbaum, V.d. Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
M.D. Ritchie, L.W. Hahn, N. Roodi, L.R. Bailey, W.D. Dupont, F.F. Parl, J.H. Moore, Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69(1), 138–147 (2001)
S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
B.H. Menze, B.M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich, F.A. Hamprecht, A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinf. 10, 1–16 (2009)
B.N. Parlett, The Symmetric Eigenvalue Problem (SIAM, Philadelphia, 1998)
V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)
G. Pang, C. Shen, L. Cao, A.V.D. Hengel, Deep learning for anomaly detection: a review. ACM Comput. Surv. 54(2), 1–38 (2021)
S. Omar, A. Ngadi, H.H. Jebur, Machine learning techniques for anomaly detection: an overview. Int. J. Comput. Appl. 79(2), 33–41 (2013)
D. Samariya, A. Thakkar, A comprehensive survey of anomaly detection algorithms. Ann. Data Sci. 10(3), 829–850 (2023)
F.E. Grubbs, Sample Criteria for Testing Outlying Observations (University of Michigan, Ann Arbor, 1949)
M. Goldstein, A. Dengel, Histogram-based outlier score (HBOS): a fast unsupervised anomaly detection algorithm. KI-2012: Poster and Demo Track 1, 59–63 (2012)
O. Alghushairy, R. Alsini, T. Soule, X. Ma, A review of local outlier factor algorithms for outlier detection in big data streams. Big Data Cognit. Comput. 5(1), 1 (2020)
F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation-based anomaly detection. ACM Trans. Knowl. Discovery Data 6(1), 1–39 (2012)
M.E. Villa-Pérez, M.A. Alvarez-Carmona, O. Loyola-González, M.A. Medina-Pérez, J.C. Velazco-Rossell, K.-K.R. Choo, Semi-supervised anomaly detection algorithms: a comparative summary and future research directions. Knowl.-Based Syst. 218, 106878 (2021)
J. Zhai, S. Zhang, J. Chen, Q. He, Autoencoder and its various variants, in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2018), pp. 415–419
Q. Zhao, S.S. Bhowmick, Association rule mining: a survey. Nanyang Technol. Univ. Singapore 135, 18 (2003)
R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases, in Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (1993), pp. 207–216
D.T. Larose, C.D. Larose, Discovering Knowledge in Data: An Introduction to Data Mining, vol. 4 (John Wiley & Sons, Hoboken, 2014)
P.C. Wong, P. Whitney, J. Thomas, Visualizing association rules for text mining, in Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis’ 99) (IEEE, Piscataway, 1999), pp. 120–123
S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and implication rules for market basket data, in Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data (1997), pp. 255–264
R. Agrawal, R. Srikant et al., Fast algorithms for mining association rules, in Procedings 20th International Conference on Very Large Data Bases, VLDB, Santiago, vol. 1215 (1994), pp. 487–499
J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation. ACM Sigmod Record 29(2), 1–12 (2000)
M.J. Zaki, S. Parthasarathy, W. Li, A localized algorithm for parallel association mining, in Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures (1997), pp. 321–330
M.L. Puterman, Markov decision processes. Handbooks Oper. Res. Manage. Sci. 2, 331–434 (1990)
E.A. Feinberg, A. Shwartz, Handbook of Markov Decision Processes: Methods and Applications, vol. 40 (Springer Science & Business Media, Berlin, 2012)
R. Bellman, A Markovian decision process. J. Math. Mech. 6(5), 679–684 (1957)
R.A. Howard, Dynamic Programming and Markov Processes (John Wiley, Hoboken, 1960)
D. Blackwell, Discrete dynamic programming. Ann. Math. Stat. 33(2), 719–726 (1962). https://celebratio.org/Blackwell_DH/article/248/
G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba, OpenAI Gym. Preprint. arXiv:1606.01540 (2016)
C.J. Watkins, P. Dayan, Q-learning. Mach. Learn. 8, 279–292 (1992)
K. Arulkumaran, M.P. Deisenroth, M. Brundage, A.A. Bharath, Deep reinforcement learning: a brief survey. IEEE Sig. Proces. Mag. 34(6), 26–38 (2017)
Y. Li, Deep reinforcement learning: an overview. Preprint. arXiv:1701.07274 (2017)
G.A. Rummery, M. Niranjan, On-line Q-learning using Connectionist Systems, vol. 37 (University of Cambridge, Department of Engineering Cambridge, Cambridge, 1994)
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Playing Atari with deep reinforcement learning. Preprint. arXiv:1312.5602 (2013)
R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, 2018)
L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)
R. Williams, A class of gradient-estimation algorithms for reinforcement learning in neural networks, in Proceedings of the International Conference on Neural Networks (1987), pp. II–601
L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, A. Madry, Implementation matters in deep RL: a case study on ppo and trpo, in International Conference on Learning Representations (2019)
Y. Li, Deep reinforcement learning: an overview. Preprint. arXiv:1701.07274 (2017)
S. Kumar, Balancing a CartPole system with reinforcement learning–a tutorial. Preprint. arXiv:2006.04938 (2020)
A.G. Barto, R.S. Sutton, C.W. Anderson, Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans. Syst. Man Cybernet. 13(5), 834–846 (1983). http://incompleteideas.net/papers/barto-sutton-anderson-83.pdf
L. Weaver, N. Tao, The optimal reward baseline for gradient-based reinforcement learning. Preprint. arXiv:1301.2315 (2013)
V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in International Conference on Machine Learning (PMLR, 2016), pp. 1928–1937
R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for reinforcement learning with function approximation. Adv. Neural Inf. Proces. Syst. 12, 1057–1063 (1999)
Z. Liu, Multiphysics in Porous Materials (Springer, Berlin, 2018)
K.B. Petersen, M.S. Pedersen, The matrix cookbook (2012). http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
L. Lucambio Pérez, L. Prudente, Nonlinear conjugate gradient methods for vector optimization. SIAM J. Optim. 28(3), 2690–2720 (2018)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Liu, Z.“. (2025). Bayesian Algorithms. In: Artificial Intelligence for Engineers. Springer, Cham. https://doi.org/10.1007/978-3-031-75953-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-75953-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75952-9
Online ISBN: 978-3-031-75953-6
eBook Packages: EngineeringEngineering (R0)