[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bayesian Algorithms

  • Chapter
  • First Online:
Artificial Intelligence for Engineers
  • 36 Accesses

Abstract

This chapter introduces Bayesian methods, which are also called Bayesian algorithms, Bayesian machine learning, and probabilistic machine learning in the literature. We will first provide a general background for statistics-based machine learning, which contains statistical inference adopted by both frequentists and Bayesians. The frequentists’ inference method, i.e., maximum likelihood estimation, is used by many other machine learning methods like artificial neural networks, while Bayesians’ method, i.e., Bayesian estimation, is adopted as the basis of Bayesian methods in this chapter. Then, major parametric Bayesian methods, e.g., naive Bayes classifier, Bayesian networks, and Markov processes, will be discussed. Next, one nonparametric Bayesian method, i.e., Gaussian process, will be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. Accenture, How AI boosts industry profits and innovation. Technical report, Accenture (2017)

    Google Scholar 

  2. The AI Index Report 2022 (2022). https://aiindex.stanford.edu/ai-index-report-2022/. Accessed 07 July 2024

  3. The AI Index Report 2024 (2024). https://aiindex.stanford.edu/report/. Accessed 07 July 2024

  4. Artificial Intelligence (AI) Software Market Size, Report 2032 — precedenceresearch.com. https://www.precedenceresearch.com/artificial-intelligence-software-market. Accessed 07 Feb 2024

  5. Critical reasons for crashes investigated in the national motor vehicle crash causation survey. Technical report (2023)

    Google Scholar 

  6. S. Singh, Critical reasons for crashes investigated in the national motor vehicle crash causation survey. Technical report (2015)

    Google Scholar 

  7. K. Abraham, D. Schwarcz, Courting disaster: the underappreciated risk of a cyber insurance catastrophe. Connecticut Insur. Law J. 27(2), 407–473 (2021)

    MATH  Google Scholar 

  8. M. Colagrossi, 10 golden age science fiction novels (2019). https://bigthink.com/high-culture/10-golden-age-science-fiction-novels/. Accessed 25 July 2024

  9. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.M. Turing, Computing Machinery and Intelligence (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  11. S.H. Lavington, The Manchester Mark I and Atlas: a historical perspective. Commun. ACM 21(1), 4–12 (1978)

    Article  MATH  Google Scholar 

  12. A.L. Samuel, Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. McCorduck, C. Cfe, Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence (AK Peters/CRC Press, Natick/Boca Raton, 2004)

    Book  MATH  Google Scholar 

  14. J. Moor, The Dartmouth College artificial intelligence conference: the next fifty years. AI Mag. 27(4), 87–87 (2006)

    MATH  Google Scholar 

  15. M. Zemčík, A brief history of chatbots. DEStech Trans. Comput. Sci. Eng. 10, 14–18 (2019)

    MATH  Google Scholar 

  16. R. Ciesla, The Book of Chatbots: From ELIZA to ChatGPT (Springer Nature, Berlin, 2024)

    Book  MATH  Google Scholar 

  17. M. Minsky, S.A. Papert, Perceptrons, Reissue of the 1988 Expanded Edition with a New Foreword by Léon Bottou: An Introduction to Computational Geometry (MIT Press, Cambridge, 2017)

    MATH  Google Scholar 

  18. D.A. Waterman, A Guide to Expert Systems (Addison-Wesley Longman Publishing Co., Inc., Boston, 1985)

    MATH  Google Scholar 

  19. E.A. Feigenbaum, P. McCorduck, The Fifth Generation (Pan Books, London, 1984)

    MATH  Google Scholar 

  20. D.A. Medler, A brief history of connectionism. Neural Comput. Surv. 1, 18–72 (1998)

    Google Scholar 

  21. R. Brooks, Flesh and Machines: How Robots Will Change Us (Vintage, New York City, 2003)

    Google Scholar 

  22. G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Raina, A. Madhavan, A.Y. Ng, Large-scale deep unsupervised learning using graphics processors, in Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 873–880

    Google Scholar 

  24. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, Piscataway, 2009), pp. 248–255

    MATH  Google Scholar 

  25. X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings (2011), pp. 315–323

    Google Scholar 

  26. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Proces. Syst. 25, 1–9 (2012)

    MATH  Google Scholar 

  27. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets. Adv. Neural Inf. Proces. Syst. 27, 1–9 (2014)

    MATH  Google Scholar 

  28. P.P. Ray, ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber-Phys. Syst. 3, 121–154 (2023)

    Article  MATH  Google Scholar 

  29. TIOBE Index - TIOBE — tiobe.com. https://www.tiobe.com/tiobe-index/. Accessed 17 July 2024

  30. T.E. Oliphant et al., Guide to NumPy, vol. 1 (Trelgol Publishing, USA, 2006)

    MATH  Google Scholar 

  31. S. Van Der Walt, S.C. Colbert, G. Varoquaux, The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

    Article  MATH  Google Scholar 

  32. P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al., SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020)

    Google Scholar 

  33. W. McKinney et al., pandas: a foundational python library for data analysis and statistics. Python High Perform. Sci. Comput. 14(9), 1–9 (2011)

    Google Scholar 

  34. J.D. Hunter, Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(03), 90–95 (2007)

    Article  MATH  Google Scholar 

  35. M.L. Waskom, Seaborn: statistical data visualization. J. Open Source Software 6(60), 3021 (2021)

    Google Scholar 

  36. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  37. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., \(\{\)TensorFlow\(\}\): a system for \(\{\)Large-Scale\(\}\) machine learning, in 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) (2016), pp. 265–283

    Google Scholar 

  38. N. Ketkar, J. Moolayil, N. Ketkar, J. Moolayil, Introduction to PyTorch, in Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch (2021), pp. 27–91

    Google Scholar 

  39. N. Ketkar, N. Ketkar, Introduction to Keras, in Deep Learning with Python: A Hands-on Introduction (2017), pp. 97–111

    Google Scholar 

  40. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba, OpenAI Gym. Preprint. arXiv:1606.01540 (2016)

    Google Scholar 

  41. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: convolutional architecture for fast feature embedding, in Proceedings of the 22nd ACM International Conference on Multimedia (2014), pp. 675–678

    Google Scholar 

  42. D.J. Higham, N.J. Higham, MATLAB Guide (SIAM, Philadelphia, 2016)

    MATH  Google Scholar 

  43. A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  44. R. Tibshirani, Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B: Stat. Methodol. 58(1), 267–288 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. D.W. Hosmer Jr, S. Lemeshow, R.X. Sturdivant, Applied Logistic Regression (John Wiley & Sons, Hoboken, 2013)

    Book  MATH  Google Scholar 

  46. J.W. Hardin, J.M. Hilbe, Generalized Linear Models and Extensions (Stata Press, College Station, 2007)

    MATH  Google Scholar 

  47. A.J. Dobson, A.G. Barnett, An Introduction to Generalized Linear Models (Chapman and Hall/CRC, Boca Raton, 2018)

    MATH  Google Scholar 

  48. T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning (2008). https://projecteuclid.org/journals/annals-of-statistics/volume-36/issue-3/Kernel-methods-in-machine-learning/10.1214/009053607000000677.full

  49. O.Z. Maimon, L. Rokach, Data Mining with Decision Trees: Theory and Applications, vol. 81 (World Scientific, Singapore, 2014)

    MATH  Google Scholar 

  50. J.R. Quinlan, Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Article  MATH  Google Scholar 

  51. J.R. Quinlan, C4.5: Programs for Machine Learning (Elsevier, Amsterdam, 2014)

    Google Scholar 

  52. L. Breiman, Classification and Regression Trees (Routledge, Milton Park, 2017)

    Book  MATH  Google Scholar 

  53. X. Ying, An overview of overfitting and its solutions, in Journal of Physics: Conference Series, vol. 1168 (IOP Publishing, Bristol, 2019), p. 022022

    Google Scholar 

  54. L.A. Breslow, D.W. Aha et al., Simplifying decision trees: a survey. Knowl. Eng. Rev. 12(1), 1–40 (1997)

    Article  MATH  Google Scholar 

  55. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Article  MATH  Google Scholar 

  56. J.-P. Vert, K. Tsuda, B. Schölkopf, A primer on kernel methods (2004). https://direct.mit.edu/books/edited-volume/3898/Kernel-Methods-in-Computational-Biology

  57. V. Jakkula, Tutorial on support vector machine (SVM). School of EECS, Washington State University 37(2.5), 3 (2006)

    Google Scholar 

  58. J.C. Platt, Fast training of support vector machines using sequential minimal optimization (1998). https://www.researchgate.net/publication/234786663_Fast_Training_of_Support_Vector_Machines_Using_Sequential_Minimal_Optimization

  59. M.A. Tanner, Tools for Statistical Inference, vol. 3 (Springer, Berlin, 1993)

    Book  MATH  Google Scholar 

  60. N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  61. G.I. Webb, J.R. Boughton, Z. Wang, Not so naive bayes: aggregating one-dependence estimators. Mach. Learn. 58, 5–24 (2005)

    Article  MATH  Google Scholar 

  62. N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  63. A. Ankan, A. Panda, pgmpy: Probabilistic graphical models using Python, in SciPy (Citeseer, 2015), pp. 6–11

    Google Scholar 

  64. S. Ghosal, A.W. van der Vaart, Fundamentals of Nonparametric Bayesian Inference, vol. 44 (Cambridge University Press, Cambridge, 2017)

    Book  MATH  Google Scholar 

  65. E. Schulz, M. Speekenbrink, A. Krause, A tutorial on gaussian process regression: modelling, exploring, and exploiting functions. J. Math. Psychol. 85, 1–16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  66. D.J. Livingstone, Artificial Neural Networks: Methods and Applications, vol. 458 (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  67. T. Trappenberg, Fundamentals of Computational Neuroscience (OUP Oxford, Oxford, 2009)

    Book  MATH  Google Scholar 

  68. D.A. Medler, A brief history of connectionism. Neural Comput. Surv. 1, 18–72 (1998)

    Google Scholar 

  69. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Google Scholar 

  70. H.J. Kelley, Gradient theory of optimal flight paths. ARS J. 30(10), 947–954 (1960)

    Article  MATH  Google Scholar 

  71. S. Dreyfus, The numerical solution of variational problems. J. Math. Anal. Appl. 5(1), 30–45 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  72. A.G. Ivakhnenko, V.G. Lapa et al., Cybernetic predicting devices, in Joint Publications Research Service (1966)

    Google Scholar 

  73. S. Linnainmaa, The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. PhD thesis, Master’s Thesis (in Finnish). University of Helsinki (1970)

    Google Scholar 

  74. A.G. Ivakhnenko, Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybernet. 4, 364–378 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  75. K. Fukushima, Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  76. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  77. P.J. Werbos, Applications of advances in nonlinear sensitivity analysis, in System Modeling and Optimization: Proceedings of the 10th IFIP Conference New York City, August 31–September 4, 1981 (Springer, Berlin, 2005), pp. 762–770

    MATH  Google Scholar 

  78. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for boltzmann machines. Cognit. Sci. 9(1), 147–169 (1985)

    MATH  Google Scholar 

  79. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  80. Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel, Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Proces. Syst. 2, 396–404 (1989)

    Google Scholar 

  81. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Sig. Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  82. S. Hochreiter, Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Universität München 91(1), 31 (1991)

    Google Scholar 

  83. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  MATH  Google Scholar 

  84. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  85. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., Mastering the game of Go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  MATH  Google Scholar 

  86. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings (2010), pp. 249–256

    Google Scholar 

  87. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. Preprint. arXiv:1409.1556 (2014)

    Google Scholar 

  88. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9

    Google Scholar 

  89. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

    Google Scholar 

  90. X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: an extremely efficient convolutional neural network for mobile devices, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 6848–6856

    Google Scholar 

  91. R. Girshick, Fast R-CNN, in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 1440–1448

    Google Scholar 

  92. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intel. 39(6), 1137–1149 (2016)

    Article  MATH  Google Scholar 

  93. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 779–788

    Google Scholar 

  94. T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks. Preprint. arXiv:1609.02907 (2016)

    Google Scholar 

  95. F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  MATH  Google Scholar 

  96. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S.Y. Philip, A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  97. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need. Adv. Neural Inf. Proces. Syst. 30, 1–15 (2017)

    Google Scholar 

  98. O. Sagi, L. Rokach, Ensemble learning: a survey. Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery 8(4), e1249 (2018)

    Google Scholar 

  99. R. Polikar, Ensemble learning, in Ensemble Machine Learning: Methods and Applications (2012), pp. 1–34

    Google Scholar 

  100. B.V. Dasarathy, B.V. Sheela, A composite classifier system design: concepts and methodology. Proc. IEEE 67(5), 708–713 (1979)

    Article  MATH  Google Scholar 

  101. B. Efron, Bootstrap methods: another look at the jackknife, in Breakthroughs in Statistics: Methodology and Distribution (Springer, Berlin, 1992), pp. 569–593

    MATH  Google Scholar 

  102. M. Kearns, Thoughts on hypothesis boosting. Unpublished Manuscript 45, 105 (1988)

    MATH  Google Scholar 

  103. M. Kearns, L. Valiant, Cryptographic limitations on learning boolean formulae and finite automata. J. ACM 41(1), 67–95 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  104. R.E. Schapire, The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)

    Article  MATH  Google Scholar 

  105. Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  106. L.K. Hansen, P. Salamon, Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intel. 12(10), 993–1001 (1990)

    Article  MATH  Google Scholar 

  107. D.H. Wolpert, Stacked generalization. Neural Networks 5(2), 241–259 (1992)

    Article  MATH  Google Scholar 

  108. L. Breiman, Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    Article  MATH  Google Scholar 

  109. Z. Kalal, J. Matas, K. Mikolajczyk, P-N learning: Bootstrapping binary classifiers by structural constraints, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, Piscataway, 2010), pp. 49–56

    MATH  Google Scholar 

  110. L. Deng, D. Yu, J. Platt, Scalable stacking and learning for building deep architectures, in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2012), pp. 2133–2136

    MATH  Google Scholar 

  111. T. Chen, C. Guestrin, XGboost: a scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 785–794

    Google Scholar 

  112. T. Hastie, R. Tibshirani, J.H. Friedman, J.H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2 (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  113. Y. Freund, R.E. Schapire et al., Experiments with a new boosting algorithm, in Machine Learning: Proceedings of the Thirteenth International Conference, vol. 96 (Citeseer, 1996), pp. 148–156

    Google Scholar 

  114. J.H. Friedman, Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). https://www.researchgate.net/publication/2424824_Greedy_Function_Approximation_A_Gradient_Boosting_Machine

    Article  MathSciNet  MATH  Google Scholar 

  115. Z. Ghahramani, Unsupervised learning, in Summer School on Machine Learning (Springer, Berlin, 2003), pp. 72–112

    MATH  Google Scholar 

  116. T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, R. Tibshirani, J. Friedman, Unsupervised learning, in The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2009), pp. 485–585

    Google Scholar 

  117. K. Kameshwaran, K. Malarvizhi, Survey on clustering techniques in data mining. Int. J. Comput. Sci. Inf. Technol. 5(2), 2272–2276 (2014)

    MATH  Google Scholar 

  118. J. MacQueen et al., Some methods for classification and analysis of multivariate observations, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, vol. 1 (1967), pp. 281–297

    MathSciNet  MATH  Google Scholar 

  119. D. Arthur, S. Vassilvitskii, k-Means++: The advantages of careful seeding. Technical report. Stanford (2006)

    Google Scholar 

  120. Y. Cheng, Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intel. 17(8), 790–799 (1995)

    Article  MATH  Google Scholar 

  121. M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., A density-based algorithm for discovering clusters in large spatial databases with noise, in KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, vol. 96 (1996), pp. 226–231

    Google Scholar 

  122. R.O. Duda, P.E. Hart et al., Pattern Classification and Scene Analysis, vol. 3 (Wiley, New York, 1973)

    MATH  Google Scholar 

  123. F. Murtagh, P. Contreras, Algorithms for hierarchical clustering: an overview. Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery 2(1), 86–97 (2012)

    Google Scholar 

  124. L. Van Der Maaten, E.O. Postma, H.J. Van Den Herik et al., Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(66–71), 13 (2009)

    Google Scholar 

  125. B. Venkatesh, J. Anuradha, A review of feature selection and its methods. Cybernet. Inf. Technol. 19(1), 3–26 (2019)

    MathSciNet  MATH  Google Scholar 

  126. R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, J. Saeed, A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. J. Appl. Sci. Technol. Trends 1(1), 56–70 (2020)

    Article  Google Scholar 

  127. K. Pearson, LIII. on lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Google Scholar 

  128. R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936)

    Article  MATH  Google Scholar 

  129. J. Hérault, Détection de grandeurs primitives dans un message composite par une architecture de calcul neuromimétique en apprentissage non supervisé, in Proceedings of GRETSI (1985), pp. 1017–1020

    Google Scholar 

  130. J.B. Tenenbaum, V.d. Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Google Scholar 

  131. M.D. Ritchie, L.W. Hahn, N. Roodi, L.R. Bailey, W.D. Dupont, F.F. Parl, J.H. Moore, Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69(1), 138–147 (2001)

    Article  Google Scholar 

  132. S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  MATH  Google Scholar 

  133. B.H. Menze, B.M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich, F.A. Hamprecht, A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinf. 10, 1–16 (2009)

    Article  Google Scholar 

  134. B.N. Parlett, The Symmetric Eigenvalue Problem (SIAM, Philadelphia, 1998)

    Book  MATH  Google Scholar 

  135. V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)

    Article  MATH  Google Scholar 

  136. G. Pang, C. Shen, L. Cao, A.V.D. Hengel, Deep learning for anomaly detection: a review. ACM Comput. Surv. 54(2), 1–38 (2021)

    Article  MATH  Google Scholar 

  137. S. Omar, A. Ngadi, H.H. Jebur, Machine learning techniques for anomaly detection: an overview. Int. J. Comput. Appl. 79(2), 33–41 (2013)

    MATH  Google Scholar 

  138. D. Samariya, A. Thakkar, A comprehensive survey of anomaly detection algorithms. Ann. Data Sci. 10(3), 829–850 (2023)

    MATH  Google Scholar 

  139. F.E. Grubbs, Sample Criteria for Testing Outlying Observations (University of Michigan, Ann Arbor, 1949)

    MATH  Google Scholar 

  140. M. Goldstein, A. Dengel, Histogram-based outlier score (HBOS): a fast unsupervised anomaly detection algorithm. KI-2012: Poster and Demo Track 1, 59–63 (2012)

    Google Scholar 

  141. O. Alghushairy, R. Alsini, T. Soule, X. Ma, A review of local outlier factor algorithms for outlier detection in big data streams. Big Data Cognit. Comput. 5(1), 1 (2020)

    Google Scholar 

  142. F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation-based anomaly detection. ACM Trans. Knowl. Discovery Data 6(1), 1–39 (2012)

    Article  MATH  Google Scholar 

  143. M.E. Villa-Pérez, M.A. Alvarez-Carmona, O. Loyola-González, M.A. Medina-Pérez, J.C. Velazco-Rossell, K.-K.R. Choo, Semi-supervised anomaly detection algorithms: a comparative summary and future research directions. Knowl.-Based Syst. 218, 106878 (2021)

    Article  Google Scholar 

  144. J. Zhai, S. Zhang, J. Chen, Q. He, Autoencoder and its various variants, in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2018), pp. 415–419

    MATH  Google Scholar 

  145. Q. Zhao, S.S. Bhowmick, Association rule mining: a survey. Nanyang Technol. Univ. Singapore 135, 18 (2003)

    MATH  Google Scholar 

  146. R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases, in Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (1993), pp. 207–216

    Google Scholar 

  147. D.T. Larose, C.D. Larose, Discovering Knowledge in Data: An Introduction to Data Mining, vol. 4 (John Wiley & Sons, Hoboken, 2014)

    Book  MATH  Google Scholar 

  148. P.C. Wong, P. Whitney, J. Thomas, Visualizing association rules for text mining, in Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis’ 99) (IEEE, Piscataway, 1999), pp. 120–123

    Google Scholar 

  149. S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and implication rules for market basket data, in Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data (1997), pp. 255–264

    Google Scholar 

  150. R. Agrawal, R. Srikant et al., Fast algorithms for mining association rules, in Procedings 20th International Conference on Very Large Data Bases, VLDB, Santiago, vol. 1215 (1994), pp. 487–499

    MATH  Google Scholar 

  151. J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation. ACM Sigmod Record 29(2), 1–12 (2000)

    Article  Google Scholar 

  152. M.J. Zaki, S. Parthasarathy, W. Li, A localized algorithm for parallel association mining, in Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures (1997), pp. 321–330

    Google Scholar 

  153. M.L. Puterman, Markov decision processes. Handbooks Oper. Res. Manage. Sci. 2, 331–434 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  154. E.A. Feinberg, A. Shwartz, Handbook of Markov Decision Processes: Methods and Applications, vol. 40 (Springer Science & Business Media, Berlin, 2012)

    MATH  Google Scholar 

  155. R. Bellman, A Markovian decision process. J. Math. Mech. 6(5), 679–684 (1957)

    MathSciNet  MATH  Google Scholar 

  156. R.A. Howard, Dynamic Programming and Markov Processes (John Wiley, Hoboken, 1960)

    MATH  Google Scholar 

  157. D. Blackwell, Discrete dynamic programming. Ann. Math. Stat. 33(2), 719–726 (1962). https://celebratio.org/Blackwell_DH/article/248/

    Article  MathSciNet  MATH  Google Scholar 

  158. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W. Zaremba, OpenAI Gym. Preprint. arXiv:1606.01540 (2016)

    Google Scholar 

  159. C.J. Watkins, P. Dayan, Q-learning. Mach. Learn. 8, 279–292 (1992)

    Article  MATH  Google Scholar 

  160. K. Arulkumaran, M.P. Deisenroth, M. Brundage, A.A. Bharath, Deep reinforcement learning: a brief survey. IEEE Sig. Proces. Mag. 34(6), 26–38 (2017)

    Article  Google Scholar 

  161. Y. Li, Deep reinforcement learning: an overview. Preprint. arXiv:1701.07274 (2017)

    Google Scholar 

  162. G.A. Rummery, M. Niranjan, On-line Q-learning using Connectionist Systems, vol. 37 (University of Cambridge, Department of Engineering Cambridge, Cambridge, 1994)

    MATH  Google Scholar 

  163. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Playing Atari with deep reinforcement learning. Preprint. arXiv:1312.5602 (2013)

    Google Scholar 

  164. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, 2018)

    MATH  Google Scholar 

  165. L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  MATH  Google Scholar 

  166. R. Williams, A class of gradient-estimation algorithms for reinforcement learning in neural networks, in Proceedings of the International Conference on Neural Networks (1987), pp. II–601

    Google Scholar 

  167. L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, A. Madry, Implementation matters in deep RL: a case study on ppo and trpo, in International Conference on Learning Representations (2019)

    Google Scholar 

  168. Y. Li, Deep reinforcement learning: an overview. Preprint. arXiv:1701.07274 (2017)

    Google Scholar 

  169. S. Kumar, Balancing a CartPole system with reinforcement learning–a tutorial. Preprint. arXiv:2006.04938 (2020)

    Google Scholar 

  170. A.G. Barto, R.S. Sutton, C.W. Anderson, Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans. Syst. Man Cybernet. 13(5), 834–846 (1983). http://incompleteideas.net/papers/barto-sutton-anderson-83.pdf

    Article  MATH  Google Scholar 

  171. L. Weaver, N. Tao, The optimal reward baseline for gradient-based reinforcement learning. Preprint. arXiv:1301.2315 (2013)

    Google Scholar 

  172. V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in International Conference on Machine Learning (PMLR, 2016), pp. 1928–1937

    Google Scholar 

  173. R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for reinforcement learning with function approximation. Adv. Neural Inf. Proces. Syst. 12, 1057–1063 (1999)

    MATH  Google Scholar 

  174. Z. Liu, Multiphysics in Porous Materials (Springer, Berlin, 2018)

    Book  MATH  Google Scholar 

  175. K.B. Petersen, M.S. Pedersen, The matrix cookbook (2012). http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html

  176. L. Lucambio Pérez, L. Prudente, Nonlinear conjugate gradient methods for vector optimization. SIAM J. Optim. 28(3), 2690–2720 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z.“. (2025). Bayesian Algorithms. In: Artificial Intelligence for Engineers. Springer, Cham. https://doi.org/10.1007/978-3-031-75953-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75953-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75952-9

  • Online ISBN: 978-3-031-75953-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics