[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Price of Pessimism for Automated Defense

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2024)

Abstract

The well-worn George Box aphorism “all models are wrong, but some are useful” is particularly salient in the cybersecurity domain, where the assumptions built into a model can have substantial financial or even national security impacts. Computer scientists are often asked to optimize for worst-case outcomes, and since security is largely focused on risk mitigation, preparing for the worst-case scenario appears rational. In this work, we demonstrate that preparing for the worst case rather than the most probable case may yield suboptimal outcomes for learning agents. Through the lens of stochastic Bayesian games, we first explore different attacker knowledge modeling assumptions that impact the usefulness of models to cybersecurity practitioners. By considering different models of attacker knowledge about the state of the game and a defender’s hidden information, we find that there is a cost to the defender for optimizing against the worst case.

Funded by the Auerbach Berger Chair in Cybersecurity held by Spiros Mancoridis, at Drexel University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Also known as the Stackelberg game.

  2. 2.

    https://github.com/dstl/YAWNING-TITAN/tree/main.

  3. 3.

    https://github.com/erickgalinkin/pop_rocks/.

References

  1. Agarwal, R., Schwarzer, M., Castro, P.S., Courville, A.C., Bellemare, M.: Deep reinforcement learning at the edge of the statistical precipice. Adv. Neural. Inf. Process. Syst. 34, 29304–29320 (2021)

    Google Scholar 

  2. Aggarwal, P., et al.: Designing effective masking strategies for cyberdefense through human experimentation and cognitive models. Comput. Secur. 117, 102671 (2022)

    Article  Google Scholar 

  3. Albrecht, S.V., Ramamoorthy, S.: A game-theoretic model and best-response learning method for ad hoc coordination in multiagent systems. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, pp. 1155–1156 (2013)

    Google Scholar 

  4. Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed Systems. John Wiley & Sons, Hoboken (2020)

    Book  Google Scholar 

  5. Andrew, A., Spillard, S., Collyer, J., Dhir, N.: Developing optimal causal cyber-defence agents via cyber security simulation. In: Workshop on Machine Learning for Cybersecurity (ML4Cyber) (2022)

    Google Scholar 

  6. Brooks, C.: Cybersecurity trends & statistics for 2023; what you need to know (2023). https://www.forbes.com/sites/chuckbrooks/2023/03/05/cybersecurity-trends--statistics-for-2023-more-treachery-and-risk-ahead-as-attack-surface-and-hacker-capabilities-grow/

  7. Campbell, R.G.: Autonomous Network Defense Using Multi-Agent Reinforcement Learning and Self-Play. Ph.D. thesis, San Jose State University (2022)

    Google Scholar 

  8. Chatterjee, S., Tipireddy, R., Oster, M., Halappanavar, M.: Propagating mixed uncertainties in cyber attacker payoffs : exploration of two-phase monte carlo sampling and probability bounds analysis. In: IEEE International Symposium on Technologies for Homeland Security. IEEE (2016)

    Google Scholar 

  9. Clark, C.E.: The pert model for the distribution of an activity time. Oper. Res. 10(3), 405–406 (1962)

    Article  Google Scholar 

  10. Standen, M., et al.: Cyber operations research gym (2022). https://github.com/cage-challenge/CybORG

  11. Ellsberg, D.: Risk, Ambiguity and Decision. Routledge, Abingdon (2015)

    Book  Google Scholar 

  12. Ethayarajh, K., Xu, W., Muennighoff, N., Jurafsky, D., Kiela, D.: Kto: model alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306 (2024)

  13. Foley, M., Hicks, C., Highnam, K., Mavroudis, V.: Autonomous network defence using reinforcement learning. In: Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, pp. 1252–1254 (2022)

    Google Scholar 

  14. Galinkin, E., Pountourakis, E., Carter, J., Mancoridis, S.: Simulation of attacker defender interaction in a noisy security game. In: AAAI-23 Workshop on Artificial Intelligence for Cyber Security (2023)

    Google Scholar 

  15. Galinkin, E., Singh, A., Vamshi, A., Hwong, J., Estep, C., Canzanese, R.: The future of cyber attacks and defense is in the cloud. In: Proceedings - IEEE MALCON (2019). https://www.researchgate.net/publication/336592029

  16. Illés, T., Terlaky, T.: Pivot versus interior point methods: pros and cons. Eur. J. Oper. Res. 140(2), 170–190 (2002)

    Article  MathSciNet  Google Scholar 

  17. Khouzani, M.H., Sarkar, S., Altman, E.: Saddle-point strategies in malware attack. IEEE J. Sel. Areas Commun. 30(1), 31–43 (2012). https://doi.org/10.1109/JSAC.2012.120104

    Article  Google Scholar 

  18. Kohgadai, A.: Alert fatigue: 31.9% of it security professionals ignore alerts (2017). https://virtualizationreview.com/articles/2017/02/17/the-problem-of-security-alert-fatigue.aspx

  19. Kumar, S., et al.: An emerging threat fileless malware: a survey and research challenges. Cybersecurity 3(1), 1–12 (2020)

    Article  Google Scholar 

  20. Liang, X., Xiao, Y.: Game theory for network security. IEEE Commun. Surv. Tutor. 15(1), 472–486 (2013). https://doi.org/10.1109/SURV.2012.062612.00056

    Article  Google Scholar 

  21. Lowe, R., Wu, Y.I., Tamar, A., Harb, J., Pieter Abbeel, O., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  22. Moalla, S., Miele, A., Pascanu, R., Gulcehre, C.: No representation, no trust: connecting representation, collapse, and trust issues in ppo. arXiv preprint arXiv:2405.00662 (2024)

  23. Nguyen, T.H., Yadav, A.: The risk of attacker behavioral learning: can attacker fool defender under uncertainty? In: Fang, F., Xu, H., Hayel, Y. (eds.) GameSec 2022, pp. 3–22. Springer, Heidelberg (2022)

    Google Scholar 

  24. Pawlick, J., Zhu, Q.: Game Theory for Cyber Deception. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-66065-9

    Book  Google Scholar 

  25. Ridley, A.: Machine learning for autonomous cyber defense. The Next Wave: The National Security Agency’s Review of Emerging Technologies (2018)

    Google Scholar 

  26. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  27. Security, O.: 2022 cloud security alert fatigue report (2022). https://orca.security/lp/sp/2022-cloud-security-alert-fatigue-report-thank-you/

  28. Shostack, A.: Threat Modeling. Wiley, Hoboken (2014)

    Google Scholar 

  29. Simard, F., Desharnais, J., Laviolette, F.: General cops and robbers games with randomness. Theor. Comput. Sci. 887, 30–50 (2021)

    Article  MathSciNet  Google Scholar 

  30. Sokri, A.: Game theory and cyber defense. In: Games in Management Science: Essays in Honor of Georges Zaccour, pp. 335–352 (2020)

    Google Scholar 

  31. Thakoor, O., Jabbari, S., Aggarwal, P., Gonzalez, C., Tambe, M., Vayanos, P.: Exploiting bounded rationality in risk-based cyber camouflage games. In: GameSec 2020. LNCS, vol. 12513, pp. 103–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64793-3_6

    Chapter  Google Scholar 

  32. Tomášek, P., Bošanský, B., Nguyen, T.H.: Using one-sided partially observable stochastic games for solving zero-sum security games with sequential attacks. In: GameSec 2020. LNCS, vol. 12513, pp. 385–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64793-3_21

    Chapter  Google Scholar 

  33. TTCP: cage-challenge (2021). https://github.com/cage-challenge

  34. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5(4), 297–323 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Galinkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galinkin, E., Pountourakis, E., Mancoridis, S. (2025). The Price of Pessimism for Automated Defense. In: Sinha, A., Fu, J., Zhu, Q., Zhang, T. (eds) Decision and Game Theory for Security. GameSec 2024. Lecture Notes in Computer Science, vol 14908. Springer, Cham. https://doi.org/10.1007/978-3-031-74835-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74835-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74834-9

  • Online ISBN: 978-3-031-74835-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics