[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Impact of Data Annotations on the Performance of Object Detection Models in Icon Detection for GUI Images

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2024)

Abstract

Detecting icons in Graphical User Interfaces (GUIs) is essential for effective application automation. This study examines the impact of different annotation methods on the performance of object detection models for icon detection in GUIs. We compared manual, automated, and hybrid annotations using three models: Faster R-CNN, YOLOv8, and YOLOv9. The results show that manual annotations achieve the highest accuracy, with YOLOv9 reaching an Average Precision (AP) of 68.23% and Faster R-CNN achieving 61.82%. Hybrid methods that combine automated annotations with manual corrections also show significant improvements, though they do not perform as well as manual annotations alone. These findings underscore the importance of high-quality, consistent annotations for training effective detection models. While we used HTML code for automated annotations to simplify the process, we encountered inconsistencies that affected model performance. This highlights the need to develop better hybrid methods tailored to specific tasks, ensuring efficiency and accuracy in data annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altinbas, M.D., Serif, T.: GUI element detection from mobile UI images using YOLov5. In: Awan, I., Younas, M., Poniszewska-Marańda, A. (eds.) MobiWIS 2022. LNCS, vol. 13475, pp. 32–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14391-5_3

    Chapter  Google Scholar 

  2. Bisong, E., Bisong, E.: Google colaboratory. Building machine learning and deep learning models on google cloud platform: a comprehensive guide for beginners, pp. 59–64 (2019)

    Google Scholar 

  3. Chen, J., et al.: Object detection for graphical user interface: old fashioned or deep learning or a combination? In: Proceedings of the 28th ACM joint meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1202–1214 (2020)

    Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88, 303–338 (2010)

    Article  Google Scholar 

  5. Fröhlich, P., Baldauf, M., Meneweger, T., Tscheligi, M., de Ruyter, B., Paternó, F.: Everyday automation experience: a research agenda. Pers. Ubiquit. Comput. 24, 725–734 (2020)

    Article  Google Scholar 

  6. Gu, Z., Xu, Z., Chen, H., Lan, J., Meng, C., Wang, W.: Mobile user interface element detection via adaptively prompt tuning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11155–11164 (2023)

    Google Scholar 

  7. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023). https://github.com/ultralytics/ultralytics. Accessed 10 June 2024

  8. Padilla, R., Netto, S.L., Da Silva, E.A.: A survey on performance metrics for object-detection algorithms. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237–242. IEEE (2020)

    Google Scholar 

  9. Passini, S., Strazzari, F., Borghi, A.: Icon-function relationship in toolbar icons. Displays 29(5), 521–525 (2008)

    Article  Google Scholar 

  10. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  11. Selcuk, B., Serif, T.: A comparison of YOLOv5 and YOLOv8 in the context of mobile UI detection. In: Younas, M., Awan, I., Grønli, T.M. (eds.) MobiWIS 2023. LNCS, vol. 13977, pp. 161–174. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-39764-6_11

    Chapter  Google Scholar 

  12. Tkachenko, M., Malyuk, M., Holmanyuk, A., Liubimov, N.: Label Studio: Data labeling software (2020-2022). https://github.com/heartexlabs/label-studio. Open source software https://github.com/heartexlabs/label-studio

  13. Wang, C.Y., Yeh, I.H., Liao, H.Y.M.: YOLOv9: learning what you want to learn using programmable gradient information. arXiv preprint arXiv:2402.13616 (2024)

  14. Xiao, S., et al.: UI semantic component group detection: grouping UI elements with similar semantics in mobile graphical user interface. Displays 83, 102679 (2024)

    Article  Google Scholar 

  15. Xie, M., Feng, S., Xing, Z., Chen, J., Chen, C.: UIED: a hybrid tool for GUI element detection. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1655–1659 (2020)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the Spanish Ministry of Economics and Industry –grant PID2020-112726RB-I00–, the Spanish Research Agency –grant PID2023-146257OB-I00–, and Missions Science and Innovation project MIG-20211008 (INMERBOT). Also, by Principado de Asturias, grant SV-PA-21-AYUD/2021/50994, and by the Council of Gijón through the University Institute of Industrial Technology of Asturias grants SV-21-GIJON-1-19, SV-22-GIJON-1-19, SV-22-GIJON-1-22, SV-23-GIJON-1-09, and SV-23-GIJON-1-17. Finally, this research has also been funded by Fundación Universidad de Oviedo grants FUO-23-008 and FUO-22-450.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mădălina Dicu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dicu, M., González, E.G., Chira, C., Villar, J.R. (2025). The Impact of Data Annotations on the Performance of Object Detection Models in Icon Detection for GUI Images. In: Quintián, H., et al. Hybrid Artificial Intelligent Systems. HAIS 2024. Lecture Notes in Computer Science(), vol 14857. Springer, Cham. https://doi.org/10.1007/978-3-031-74183-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74183-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74182-1

  • Online ISBN: 978-3-031-74183-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics