[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Enhancing Computational Science Education Through Practical Applications: Leveraging Predictive Analytics in Box Meal Services

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

This paper presents a student project carried out in collaboration with a major industry partner, demonstrating the simultaneous novel application of predictive analytics, in particular machine learning (ML), in the domain of boxed meal services, and explores its implications for IT education. Drawing from a validated ML model trained on data collected from box meal companies, this study showcases how predictive analytics can accurately predict customer sociodemographic characteristics, thereby facilitating targeted marketing strategies and personalized service offerings. By elucidating the methodology and results of the ML model, this article demonstrates the practical utility of computational techniques in real-world electronic services. Moreover, it discusses the pedagogical implications of incorporating such case studies into computational science education, highlighting the opportunities for experiential learning, interdisciplinary collaboration, and industry relevance. Through this exploration, the article contributes to the discourse on innovative teaching methodologies in computational science, emphasizing the importance of bridging theory with practical applications to prepare students for diverse career pathways in the digital era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Annaraud, K., Berezina, K.: Predicting satisfaction and intentions to use online food delivery: what really makes a difference? J. Foodserv. Bus. Res. 23(4), 305–323 (2020)

    Article  Google Scholar 

  2. Anshari, M., Almunawar, M.N., Lim, S.A., Al-Mudimigh, A.: Customer relationship management and big data enabled: personalization & customization of services. Appl. Comput. Inform. 15(2), 94–101 (2019)

    Article  Google Scholar 

  3. Berger, M.: Vygotsky’s theory of concept formation and mathematics education. Int. Group Psychol. Math. Educ. 2, 153–160 (2005)

    Google Scholar 

  4. Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., Gentine, P.: Enforcing analytic constraints in neural networks emulating physical systems. Phys. Rev. Lett. 126(9), 098302 (2021)

    Article  MathSciNet  Google Scholar 

  5. Boutaba, R., et al.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. App. 9(1), 1–99 (2018)

    Google Scholar 

  6. Braad, E., Degens, N., Ijsselsteijn, W.: Designing for metacognition in game-based learning: a qualitative review. Transl. Issues Psychol. Sci. 6, 53–69 (2020). https://doi.org/10.1037/tps0000217

    Article  Google Scholar 

  7. Brown, S.: Machine Learning, Explained. MIT Sloan School of Management, Cambridge (2021), https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained

  8. Gogus, A.: Bloom’s Taxonomy of Learning Objectives, pp. 469–473. Springer US, Boston, MA (2012). https://doi.org/10.1007/978-1-4419-1428-6_141

  9. Gunden, N., Morosan, C., DeFranco, A.: Consumers’ intentions to use online food delivery systems in the USA. Int. J. Contempor. Hosp. Manag. 32, 1325–1345 (2020)

    Article  Google Scholar 

  10. Hassan, M., Tabasum, M.: Customer profiling and segmentation in retail banks using data mining techniques. Int. J. Adv. Res. Comput. Sci. 9(4), 24–29 (2018)

    Article  Google Scholar 

  11. Johnson, D., Johnson, R.: Making cooperative learning work. Theory Pract. 38, 67–73 (1999). https://doi.org/10.1080/00405849909543834

    Article  Google Scholar 

  12. Koedinger, K.R., D’Mello, S., McLaughlin, E.A., Pardos, Z.A., Rosé, C.P.: Data mining and education. WIREs Cognit. Sci. 6(4), 333–353 (2015). https://doi.org/10.1002/wcs.1350

    Article  Google Scholar 

  13. Konak, A., Clark, T.K., Nasereddin, M.: Using kolb’s experiential learning cycle to improve student learning in virtual computer laboratories. Comput. Educ. 72, 11–22 (2014). https://doi.org/10.1016/j.compedu.2013.10.013

    Article  Google Scholar 

  14. Larson, B., Keiper, T.: Instructional strategies for middle and secondary social studies: methods, assessment, and classroom management. In: Instructional Strategies for Middle and Secondary Social Studies: Methods, Assessment, and Classroom Management, pp. 1–290 (2011). https://doi.org/10.4324/9780203829899

  15. Lee, J., Jung, O., Lee, Y., Kim, O., Park, C.: A comparison and interpretation of machine learning algorithm for the prediction of online purchase conversion. J. Theor. Appl. Electron. Commer. Res. 16(5), 1472–1491 (2021)

    Article  Google Scholar 

  16. Leslie, D.: The ethics of computational social science. In: Bertoni, E., Fontana, M., Gabrielli, L., Signorelli, S., Vespe, M. (eds.) Handbook of Computational Social Science for Policy, pp. 57–104. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-16624-2_4

  17. Li, C., Mirosa, M., Bremer, P.: Review of online food delivery platforms and their impacts on sustainability. Sustainability 12(14), 5528 (2020)

    Article  Google Scholar 

  18. Lu, J., Wang, G., Tao, X., Wang, J., Törngren, M.: A domain-specific modeling approach supporting tool-chain development with Bayesian network models. Integr. Comput. Aided Eng. 27(2), 153–171 (2020)

    Article  Google Scholar 

  19. Ma, L., Sun, B.: Machine learning and AI in marketing-connecting computing power to human insights. Int. J. Res. Mark. 37(3), 481–504 (2020)

    Article  Google Scholar 

  20. Mach-Król, M., Hadasik, B.: On a certain research gap in big data mining for customer insights. Appl. Sci. 11(15), 6993 (2021)

    Article  Google Scholar 

  21. Mazurkiewicz, P.: Rewolucja w gastronomii, pude?ka warte miliard z?otych. https://www.rp.pl/biznes/art342111-rewolucja-w-gastronomii-pudelka-warte-miliard-zlotych/ (2021). Accessed 20 Sept 2021

  22. Moral-Cuadra, S., Solano-Sánchez, M.Á., López-Guzmán, T., Menor-Campos, A.: Peer-to-peer tourism: tourists’ profile estimation through artificial neural networks. J. Theor. Appl. Electron. Commer. Res. 16(4), 1120–1135 (2021)

    Article  Google Scholar 

  23. Saxena, A., et al.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)

    Article  Google Scholar 

  24. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014)

    Article  Google Scholar 

  25. Team, I.E.: 10 must-have tutoring skills (2023). https://www.indeed.com/career-advice/career-development/tutoring-skills

  26. Xu, D., Shi, Y., Tsang, I.W., Ong, Y.S., Gong, C., Shen, X.: Survey on multi-output learning. IEEE Trans. Neural Netw. Learn. Syst. 31(7), 2409–2429 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper and the research behind it would not have been possible without the exceptional support of Graphcore Customer Engineering and Software Engineering team. We would like to express our very great appreciation to Hubert Chrzaniuk, Krzysztof Góreczny and Grzegorz Andrejczuk for their valuable and constructive suggestions connected to testing our algorithms and developing this research work. This research was partly supported by PLGrid Infrastructure at ACK Cyfronet AGH, Krakow, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Gepner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jacyna-Golda, I., Gepner, P., Krawiec, J., Halbiniak, K., Jankowski, A., Wybraniak-Kujawa, M. (2024). Enhancing Computational Science Education Through Practical Applications: Leveraging Predictive Analytics in Box Meal Services. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14838. Springer, Cham. https://doi.org/10.1007/978-3-031-63783-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63783-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63785-8

  • Online ISBN: 978-3-031-63783-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics