[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

GraphMesh: Geometrically Generalized Mesh Refinement Using GNNs

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Optimal mesh refinement is important for finite element simulations, facilitating the generation of non-uniform meshes. While existing neural network-based approaches have successfully generated high quality meshes, they can only handle a fixed number of vertices seen during training. We introduce GraphMesh, a novel mesh refinement method designed for geometric generalization across meshes with varying vertex counts. Our method employs a two-step process, initially learning a unified embedding for each node within an input coarse mesh, and subsequently propagating this embedding based on mesh connectivity to predict error distributions. By learning a node-wise embedding, our method achieves superior simulation accuracy with reduced computational costs compared to current state-of-the-art methods. Through experimentation and comparisons, we showcase the effectiveness of our approach across various scenarios, including geometries with different vertex counts. We validated our approach by predicting the local error estimates for the solution of Poisson’s equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zienkiewicz, O.C., Taylor, R.L., David, F.: The Finite Element Method for Solid and Structural Mechanics, 7th edn. Elsevier, New York (2014)

    Google Scholar 

  2. Panthi, S.K., Ramakrishnan, N., Pathak, K.K., Chouhan, J.S.: An analysis of springback in sheet metal bending using finite element method (FEM). J. Mater. Process. Technol. 186, 120–124 (2007)

    Article  Google Scholar 

  3. Economon, T.D., Palacios, F., Copeland, S.R., Lukaczyk, T.W., Alonso, J.J.: SU2: an open-source suite for multiphysics simulation and design. AIAA J. 54, 828–846 (2016)

    Article  Google Scholar 

  4. Zhengyong, R., Jingtian, T.: 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method. Geophysics 75, H7–H17 (2010)

    Article  Google Scholar 

  5. Steffen, M., Bodo, N.: Computational Acoustics of Noise Propagation in Fluids: Finite and Boundary Element Methods, vol. 578. Springer, Cham (2008). https://doi.org/10.1007/978-3-540-77448-8

  6. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1–3), 21–74 (2002)

    Article  MathSciNet  Google Scholar 

  7. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142, 1–88 (1997)

    Article  MathSciNet  Google Scholar 

  8. Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44, 283–301 (1985)

    Article  MathSciNet  Google Scholar 

  9. Zhang, Z., Wang, Y., Jimack, P.K., Wang, H.: MeshingNet: a new mesh generation method based on deep learning. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12139, pp. 186–198. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50420-5_14

    Chapter  Google Scholar 

  10. Zhang, Z., Jimack, P.K., Wang, H.: MeshingNet3D: efficient generation of adapted tetrahedral meshes for computational mechanics. Adv. Eng. Softw. 157, 103021 (2021)

    Google Scholar 

  11. Zienkiewicz, O., Zhu, J.: Adaptivity and mesh generation. Int. J. Numer. Meth. Eng. 32, 783–810 (1991)

    Article  Google Scholar 

  12. Pfaff, T., Fortunatoet, M., Sanchez-Gonzalez, A., Battaglia, P.: Learning mesh-based simulation with graph networks. In: International Conference on Learning Representations, Vienna (2020)

    Google Scholar 

  13. Minseong, K., Jaeseung, L., Jibum, K.: GMR-Net: GCN-based mesh refinement framework for elliptic PDE problems. Eng. Comput. 39, 3721–3737 (2023)

    Article  Google Scholar 

  14. Geuzaine, C., Remacle, F.: Gmsh: a three dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79, 1309–1331 (2009)

    Article  Google Scholar 

  15. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–266 (2012)

    Article  MathSciNet  Google Scholar 

  16. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20, 19–27 (2003)

    Article  MathSciNet  Google Scholar 

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  18. Abdelaziz, Y., Nabbou, A., Hamouine, A.: A state-of-the art review of the X-FEM for computational fracture mechanics. Appl. Math. Model. 33, 4269–4282 (2009)

    Article  MathSciNet  Google Scholar 

  19. Paszke, A., et al.: PyTorch: an imperative style, high performance deep learning library. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  20. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainulla Khan .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors do not have any competing interests that are applicable to the content presented in this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, A., Yamada, M., Chikane, A., Kaul, M. (2024). GraphMesh: Geometrically Generalized Mesh Refinement Using GNNs. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63775-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63774-2

  • Online ISBN: 978-3-031-63775-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics