[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Perspective on the Ubiquity of Interaction Streams in Human Realm

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Typically, for analysing and modelling social phenomena, networks are a convenient framework that allows for the representation of the interconnectivity of individuals. These networks are often considered transmission structures for processes that happen in society, e.g. diffusion of information, epidemics, and spread of influence. However, constructing a network can be challenging, as one needs to choose its type and parameters accurately. As a result, the outcomes of analysing dynamic processes often heavily depend on whether this step was done correctly. In this work, we advocate that it might be more beneficial to step down from the tedious process of building a network and base it on the level of the interactions instead. By taking this perspective, we can be closer to reality, and from the cognitive perspective, human beings are directly exposed to events, not networks. However, we can also draw a parallel to stream data mining, which brings a valuable apparatus for stream processing. Apart from taking the interaction stream perspective as a typical way in which we should study social phenomena, this work advocates that it is possible to map the concepts embodied in human nature and cognitive processes to the ones that occur in interaction streams. Exploiting this mapping can help reduce the diversity of problems that one can find in data stream processing for machine learning problems. Finally, we demonstrate one of the use cases in which the interaction stream perspective can be applied, namely, the social learning process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acemoglu, D., Dahleh, M.A., Lobel, I., Ozdaglar, A.: Bayesian learning in social networks. Rev. Econ. Stud. 78(4), 1201–1236 (2011)

    Article  MathSciNet  Google Scholar 

  2. Acemoglu, D., Ozdaglar, A.: Opinion dynamics and learning in social networks. Dyn. Games Appl. 1, 3–49 (2011)

    Article  MathSciNet  Google Scholar 

  3. Azzopardi, L.: Cognitive biases in search. In: Proceedings of the 2021 Conference on Human Information Interaction and Retrieval (2021)

    Google Scholar 

  4. Bansback, N., Li, L.C., Lynd, L., Bryan, S.: Exploiting order effects to improve the quality of decisions. Patient Educ. Couns. 96(2), 197–203 (2014)

    Article  Google Scholar 

  5. Barkoczi, D., Galesic, M.: Social learning strategies modify the effect of network structure on group performance. Nat. Commun. 7(1), 13109 (2016)

    Article  Google Scholar 

  6. Bawden, D., Robinson, L.: Information Overload: An Introduction. Oxford Research Encyclopedia of Politics (2020)

    Google Scholar 

  7. Berge, C.: Hypergraphs: Combinatorics of Finite Sets, vol. 45. Elsevier (1984)

    Google Scholar 

  8. Cabrera, F.O., Sànchez-Marrè, M.: Environmental data stream mining through a case-based stochastic learning approach. Environ. Model. Softw. 106, 22–34 (2018)

    Article  Google Scholar 

  9. Cao, R.M., Liu, S.Y., Xu, X.K.: Network embedding for link prediction: the pitfall and improvement. Chaos: Interdiscip. J. Nonl. Sci. 29(10) (2019)

    Google Scholar 

  10. Cheng, S., Pain, C.C., Guo, Y.K., Arcucci, R.: Real-time updating of dynamic social networks for covid-19 vaccination strategies. J. Ambient Intell. Humaniz. Comput. 15(3), 1981–1994 (2024)

    Google Scholar 

  11. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588 (1973)

    Article  MathSciNet  Google Scholar 

  12. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  Google Scholar 

  13. DeJordy, R., Halgin, D.: Introduction to Ego Network Analysis. Boston College and the Winston Center for Leadership and Ethics, Boston (2008)

    Google Scholar 

  14. Frisch, D., Baron, J.: Ambiguity and rationality. J. Behav. Decis. Mak. 1(3), 149–157 (1988)

    Article  Google Scholar 

  15. Gaber, M.M., Krishnaswamy, S., Zaslavsky, A.: Adaptive mining techniques for data streams using algorithm output granularity. In: Australasian Data Mining Workshop: 08/12/2003–12/12/2003. The University of Technology (2003)

    Google Scholar 

  16. Galam, S.: Majority rule, hierarchical structures, and democratic totalitarianism: a statistical approach. J. Math. Psychol. 30(4), 426–434 (1986)

    Article  Google Scholar 

  17. Galesic, M., et al.: Beyond collective intelligence: collective adaptation. J. R. Soc. Interface 20(200), 20220736 (2023)

    Google Scholar 

  18. Golub, B., Jackson, M.O.: Naive learning in social networks and the wisdom of crowds. Am. Econ. J.: Microecon. 2(1), 112–149 (2010)

    Google Scholar 

  19. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  20. Hare, A.P., Borgatta, E.F., Bales, R.F.: Small Groups: Studies in Social Interaction (1965)

    Google Scholar 

  21. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  22. Hołyst, J.A., et al.: Protect our environment from information overload. Nat. Hum. Behav. 8(3), 402–403 (2024)

    Google Scholar 

  23. Huber, J., Payne, J.W., Puto, C.: Adding asymmetrically dominated alternatives: violations of regularity and the similarity hypothesis. J. Consum. Res. 9(1), 90 (1982)

    Article  Google Scholar 

  24. Karsai, M., et al.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83(2), 025102 (2011)

    Google Scholar 

  25. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  26. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

    Article  Google Scholar 

  27. Lachin, J.M.: Fallacies of last observation carried forward analyses. Clin. Trials 13(2), 161–168 (2016)

    Article  Google Scholar 

  28. Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread of news on DIGG and twitter social networks. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 4, pp. 90–97 (2010)

    Google Scholar 

  29. Lever, J., Cheng, S., Arcucci, R.: Human-sensors and physics aware machine learning for wildfire detection and nowcasting. In: Mikyška, J., et al. (eds.) ICCS 2023, pp. 422–429. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36027-5_33

  30. Lin, C.C., Chen, C.S., Chen, A.P.: Using intelligent computing and data stream mining for behavioral finance associated with market profile and financial physics. Appl. Soft Comput. 68, 756–764 (2018)

    Article  Google Scholar 

  31. Michalski, R., Jankowski, J., Bródka, P.: Effective influence spreading in temporal networks with sequential seeding. IEEE Access 8, 151208–151218 (2020)

    Article  Google Scholar 

  32. Michalski, R., Jankowski, J., Pazura, P.: Entropy-based measure for influence maximization in temporal networks. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12140, pp. 277–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50423-6_21

  33. Michalski, R., Kazienko, P.: Maximizing social influence in real-world networks-the state of the art and current challenges. In: Propagation Phenomena in Real World Networks, pp. 329–359 (2015)

    Google Scholar 

  34. Michalski, R., Serwata, D., Nurek, M., Szymanski, B.K., Kazienko, P., Jia, T.: Temporal network epistemology: on reaching consensus in a real-world setting. Chaos: Interdiscip. J. Nonl. Sci. 32(6) (2022)

    Google Scholar 

  35. Nickerson, R.S.: Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2(2), 175–220 (1998)

    Article  Google Scholar 

  36. Peelle, J., Wingfield, A.: How our brains make sense of noisy speech. Acoust. Today 18(3), 40–48 (2022)

    Article  Google Scholar 

  37. Pósfai, M., Barabasi, A.L.: Network Science. Cambridge University Press (2016)

    Google Scholar 

  38. Radvansky, G.A., Zacks, J.M.: Event perception. Wiley Interdiscip. Rev.: Cognit. Sci. 2(6), 608–620 (2011)

    Article  Google Scholar 

  39. Radvansky, G.A., Zacks, J.M.: Event Cognition. Oxford University Press (2014)

    Google Scholar 

  40. Rogers, E.M., Singhal, A., Quinlan, M.M.: Diffusion of innovations. In: An Integrated Approach to Communication Theory and Research, pp. 432–448. Routledge (2014)

    Google Scholar 

  41. Royle, G.F.: Graphs and multigraphs. In: Handbook of Combinatorial Designs, pp. 757–765. Chapman and Hall/CRC (2006)

    Google Scholar 

  42. Rutkowski, L., Jaworski, M., Duda, P.: Stream Data Mining: Algorithms and Their Probabilistic Properties. SBD, vol. 56. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-13962-9

  43. Saganowski, S., Bródka, P., Kazienko, P.: Influence of the dynamic social network timeframe type and size on the group evolution discovery. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 679–683. IEEE (2012)

    Google Scholar 

  44. Salnikov, V., Cassese, D., Lambiotte, R.: Simplicial complexes and complex systems. Eur. J. Phys. 40(1), 014001 (2018)

    Article  Google Scholar 

  45. Stepien, S., Jankowski, J., Brodka, P., Michalski, R.: The role of conformity in opinion dynamics modelling with multiple social circles. In: Mikyska, J., et al. (eds.) ICCS 2023, pp. 33–47. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36024-4_3

  46. Sznajd-Weron, K., Weron, R.: A simple model of price formation. Int. J. Mod. Phys. C 13(01), 115–123 (2002)

    Article  Google Scholar 

  47. Torricelli, M., Karsai, M., Gauvin, L.: weg2vec: event embedding for temporal networks. Sci. Rep. 10(1), 7164 (2020)

    Article  Google Scholar 

  48. Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases. Science 185(4157), 1124–1131 (1974)

    Article  Google Scholar 

  49. Wasserman, S.: Social Network Analysis: Methods and Applications, vol. 2, pp. 1–22. Cambridge University Press (1994)

    Google Scholar 

  50. Weiss, G.: Data mining in the telecommunications industry. In: Networking and Telecommunications: Concepts, Methodologies, Tools, and Applications, pp. 194–201. IGI Global (2010)

    Google Scholar 

  51. Weskida, M., Michalski, R.: Finding influentials in social networks using evolutionary algorithm. J. Comput. Sci. 31, 77–85 (2019)

    Article  MathSciNet  Google Scholar 

  52. Zhang, Y., Fong, S., Fiaidhi, J., Mohammed, S., et al.: Real-time clinical decision support system with data stream mining. BioMed Res. Int. 2012, 1–8 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish National Science Centre, under grant no. 2021/41/B/HS6/02798. This work was also partially funded by the European Union under the Horizon Europe grant OMINO (grant no. 101086321). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor European Research Executive Agency can be held responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Serwata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serwata, D., Nurek, M., Michalski, R. (2024). A Perspective on the Ubiquity of Interaction Streams in Human Realm. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63775-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63774-2

  • Online ISBN: 978-3-031-63775-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics