Abstract
The detection and explanation of anomalies within the industrial context remains a difficult task, which requires the use of well-designed methods. In this study, we focus on evaluating the performance of Explainable Anomaly Detection (XAD) algorithms in the context of a complex industrial process, specifically cold rolling. We train several state-of-the-art anomaly detection algorithms on the synthetic data from the cold rolling process and optimize their hyperparameters to maximize its predictive capabilities. Then we employ various model-agnostic Explainable AI (XAI) methods to generate explanations for the abnormal observations. The explanations are evaluated using a set of XAI metrics specifically selected for the anomaly detection task in industrial setting. The results provide insights into the impact of the selection of both machine learning and XAI methods on the overall performance of the model, emphasizing the importance of interpretability in industrial applications. For the detection of anomalies in cold rolling, we found that autoencoder-based approaches outperformed other methods, with the SHAP method providing the best explanations according to the evaluation metrics used.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdullah, T.A.A., Zahid, M.S.M., Ali, W.: A review of interpretable ml in healthcare: taxonomy, applications, challenges, and future directions. Symmetry 13(12), 2439 (2021). https://doi.org/10.3390/sym13122439
Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052
Alvarez-Melis, D., Jaakkola, T.S.: Towards robust interpretability with self-explaining neural networks. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS 2018), pp. 7786–7795. Curran Associates Inc., Red Hook (2018)
Anello, E., et al.: Anomaly detection for the industrial internet of things: an unsupervised approach for fast root cause analysis. In: 2022 IEEE Conference on Control Technology and Applications (CCTA), pp. 1366–1371 (2022). https://doi.org/10.1109/CCTA49430.2022.9966158
Baek, M., Kim, S.B.: Failure detection and primary cause identification of multivariate time series data in semiconductor equipment. IEEE Access 11, 54363–54372 (2023). https://doi.org/10.1109/ACCESS.2023.3281407
Barbado, A.: Óscar Corcho: interpretable machine learning models for predicting and explaining vehicle fuel consumption anomalies. Eng. Appl. Artif. Intell. 115, 105222 (2022). https://doi.org/10.1016/j.engappai.2022.105222
Bhatt, U., Weller, A., Moura, J.M.F.: Evaluating and aggregating feature-based model explanations. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI 2020) (2021)
Bland, D.R., Ford, H.: The calculation of roll force and torque in cold strip rolling with tensions. Proc. Inst. Mech. Eng. 159(1), 144–163 (1948)
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD 2000), pp. 93–104. Association for Computing Machinery, New York (2000). https://doi.org/10.1145/342009.335388
Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8) (2019). https://doi.org/10.3390/electronics8080832
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009). https://doi.org/10.1145/1541880.1541882
Dwivedi, R., et al.: Explainable AI (XAI): core ideas, techniques, and solutions. ACM Comput. Surv. 55(9), 1–33 (2023). https://doi.org/10.1145/3561048
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231. AAAI Press (1996)
Goldstein, M., Dengel, A.: Histogram-based outlier score (HBOS): a fast unsupervised anomaly detection algorithm. In: KI-2012: Poster and Demo Track, vol. 1, pp. 59–63 (2012)
Ha, D.T., Hoang, N.X., Hoang, N.V., Du, N.H., Huong, T.T., Tran, K.P.: Explainable anomaly detection for industrial control system cybersecurity. IFAC-PapersOnLine 55(10), 1183–1188 (2022). https://doi.org/10.1016/j.ifacol.2022.09.550. 10th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022
Hermansa, M., Kozielski, M., Michalak, M., Szczyrba, K., Wrobel, L., Sikora, M.: Sensor-based predictive maintenance with reduction of false alarms; a case study in heavy industry. Sensors 22(1) (2022). https://doi.org/10.3390/s22010226
Jakubowski, J., Stanisz, P., Bobek, S., Nalepa, G.J.: Roll wear prediction in strip cold rolling with physics-informed autoencoder and counterfactual explanations. In: 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10. IEEE (2022). https://doi.org/10.1109/DSAA54385.2022.10032357
Kim, D., Antariksa, G., Handayani, M.P., Lee, S., Lee, J.: Explainable anomaly detection framework for maritime main engine sensor data. Sensors 21(15) (2021). https://doi.org/10.3390/s21155200
Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the 24rd International Conference on Very Large Data Bases (VLDB 1998), pp. 392–403. Morgan Kaufmann Publishers Inc., San Francisco (1998)
Lenard, J.G.: 9 - tribology. In: Lenard, J.G. (ed.) Primer on Flat Rolling, 2nd edn, pp. 193–266. Elsevier, Oxford (2014). https://doi.org/10.1016/B978-0-08-099418-5.00009-3
Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017)
Mahalanobis, P.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2, 49–55 (1936)
Nauta, M., et al.: From anecdotal evidence to quantitative evaluation methods: a systematic review on evaluating explainable AI. ACM Comput. Surv. 55(13s), 1–42 (2023). https://doi.org/10.1145/3583558
Oblizanov, A., Shevskaya, N., Kazak, A., Rudenko, M., Dorofeeva, A.: Evaluation metrics research for explainable artificial intelligence global methods using synthetic data. Appl. Syst. Innov. 6(1) (2023). https://doi.org/10.3390/asi6010026
Pevný, T.: Loda: lightweight on-line detector of anomalies. Mach. Learn. 102(2), 275–304 (2015). https://doi.org/10.1007/s10994-015-5521-0
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), pp. 1135–1144. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939778
Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (MLSDA 2014), pp. 4–11. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2689746.2689747
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)
Steenwinckel, B., et al.: Flags: a methodology for adaptive anomaly detection and root cause analysis on sensor data streams by fusing expert knowledge with machine learning. Futur. Gener. Comput. Syst. 116, 30–48 (2021). https://doi.org/10.1016/j.future.2020.10.015
Tan, S.C., Ting, K.M., Liu, T.F.: Fast anomaly detection for streaming data. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI 2011), vol. 2, pp. 1511–1516. AAAI Press (2011)
Venkata Reddy, N., Suryanarayana, G.: A set-up model for tandem cold rolling mills. J. Mater. Process. Technol. 116(2–3), 269–277 (2001). https://doi.org/10.1016/s0924-0136(01)01007-x
Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31, 841 (2017)
Wang, H., Bah, M.J., Hammad, M.: Progress in outlier detection techniques: a survey. IEEE Access 7, 107964–108000 (2019). https://doi.org/10.1109/access.2019.2932769
Acknowledgements
Project XPM is supported by the National Science Centre, Poland (2020/02/Y/ST6/00070), under CHIST-ERA IV programme, which has received funding from the EU Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 857925.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jakubowski, J., Stanisz, P., Bobek, S., Nalepa, G.J. (2024). Assessment of Explainable Anomaly Detection for Monitoring of Cold Rolling Process. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-63775-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63774-2
Online ISBN: 978-3-031-63775-9
eBook Packages: Computer ScienceComputer Science (R0)