[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-fidelity EM Analysis

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

The design of antenna systems poses a significant challenge due to stringent performance requirements dictated by contemporary applications and the high computational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter stage is especially critical as rigorous numerical optimization becomes essential for achieving optimal performance. In an increasing number of instances, global parameter tuning is necessary. Unfortunately, the use of nature-inspired algorithms, the prevalent choice for global design, is hindered by their poor computational efficiency. This article presents an innovative approach to cost-efficient global optimization of antenna input characteristics. Our methodology leverages response feature technology, ensuring inherent regularization of the optimization task by exploring the nearly-linear dependence between the coordinates of feature points and the antenna's dimensions. The optimization process is structured as a machine learning (ML) procedure, utilizing a kriging surrogate model rendering response features to generate promising candidate designs (infill points). This model is iteratively refined using accumulated EM simulation data. Further acceleration is achieved by incorporating multi-fidelity EM analysis, where initial sampling and surrogate model construction use low-fidelity EM simulations, and the ML optimization loop employs high-fidelity EM analysis. The multi-fidelity EM simulation data is blended into a single surrogate using co-kriging. Extensive verification of the presented algorithm demonstrates its remarkable computational efficiency, with an average running cost not exceeding ninety EM simulations per run and up to a seventy percent relative speedup over the single-fidelity procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuan, X.-T., Chen, Z., Gu, T., Yuan, T.: A wideband PIFA-pair-based MIMO antenna for 5G smartphones. IEEE Ant. Wireless Propag. Lett. 20, 371–375 (2021)

    Article  Google Scholar 

  2. Sun, L., Li, Y., Zhang, Z.: Wideband decoupling of integrated slot antenna pairs for 5G smartphones. IEEE Trans. Ant. Prop. 69, 2386–2391 (2021)

    Article  Google Scholar 

  3. Kapusuz, K.Y., Berghe, A.V., Lemey, S., Rogier, H.: Partially filled half-mode substrate integrated waveguide leaky-wave antenna for 24 GHz automotive radar. IEEE Ant. Wireless Propag. Lett. 20, 33–37 (2021)

    Article  Google Scholar 

  4. Ameen, M., Thummaluru, S.R., Chaudhary, R.K.: A compact multilayer triple-band circularly polarized antenna using anisotropic polarization converter. IEEE Ant. Wireless Propag. Lett. 20, 145–149 (2021)

    Article  Google Scholar 

  5. Aqlan, B., Himdi, M., Vettikalladi, H., Le-Coq, L.: A circularly polarized sub-terahertz antenna with low-profile and high-gain for 6G wireless communication systems. IEEE Access 9, 122607–122617 (2021)

    Article  Google Scholar 

  6. Wen, Z.-Y., Ban, Y.-L., Yang, Y., Wen, Q.: Risley-prism-based dual-circularly polarized 2-D beam scanning antenna with flat scanning gain. IEEE Ant. Wireless Propag. Lett. 20, 2412–2416 (2021)

    Article  Google Scholar 

  7. Shirazi, M., Li, T., Huang, J., Gong, X.: A reconfigurable dual-polarization slot-ring antenna element with wide bandwidth for array applications. IEEE Trans. Ant. Prop. 66, 5943–5954 (2018)

    Article  Google Scholar 

  8. Chen, C.: A compact wideband endfire filtering antenna inspired by a uniplanar microstrip antenna. IEEE Ant. Wireless Propag. Lett. 21, 853–857 (2022)

    Article  Google Scholar 

  9. Wu, Y.F., Cheng, Y.J., Zhong, Y.C., Yang, H.N.: Substrate integrated waveguide slot array antenna to generate Bessel beam with high transverse linear polarization purity. IEEE Trans. Ant. Propag. 70, 750–755 (2022)

    Article  Google Scholar 

  10. Lee, J., Kim, H., Oh, J.: Large-aperture metamaterial lens antenna for multi-layer MIMO transmission for 6G. IEEE Access 10, 20486–20495 (2022)

    Article  Google Scholar 

  11. Chen, Z., Zhang, H.C., Cheng, Q.S.: Surrogate-assisted quasi-Newton enhanced global optimization of antennas based on a heuristic hypersphere sampling. IEEE Trans. Ant. Propag. 69, 2993–2998 (2021)

    Article  Google Scholar 

  12. Nocedal, J., Wrigth, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    Google Scholar 

  13. Conn, A.R., Scheinberg, K., Vicente, L.N.: Derivative-Free Optimization. MPS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics, Philadelphia (2009

    Google Scholar 

  14. Xu, Y., et al.: A reinforcement learning-based multi-objective optimization in an interval and dynamic environment. Knowl.-Based Syst. 280, paper No. 111019 (2023)

    Google Scholar 

  15. Zhu, D.Z., Werner, P.L., Werner, D.H.: Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm. IEEE Trans. Ant. Propag. 65, 7137–7149 (2017)

    Article  Google Scholar 

  16. Du, J., Roblin, C.: Stochastic surrogate models of deformable antennas based on vector spherical harmonics and polynomial chaos expansions: application to textile antennas. IEEE Trans. Ant. Prop. 66, 3610–3622 (2018)

    Article  Google Scholar 

  17. Blankrot, B., Heitzinger, C.: Efficient computational design and optimization of dielectric metamaterial structures. IEEE J. Multiscale Multiphys. Comp. Techn. 4, 234–244 (2019)

    Article  Google Scholar 

  18. Qian, B., Huang, X., Chen, X., Abdullah, M., Zhao, L., Kishk, A.A.: Surrogate-assisted defected ground structure design for reducing mutual coupling in 2 × 2 microstrip antenna array. IEEE Ant. Wireless Propag. Lett. 21, 351–355 (2022)

    Article  Google Scholar 

  19. Koziel, S., Pietrenko-Dabrowska, A.: Reliable EM-driven size reduction of antenna structures by means of adaptive penalty factors. IEEE Trans. Ant. Propag. 70, 1389–1401 (2021)

    Article  Google Scholar 

  20. Li, W., Zhang, Y., Shi, X.: Advanced fruit fly optimization algorithm and its application to irregular subarray phased array antenna synthesis. IEEE Access 7, 165583–165596 (2019)

    Article  Google Scholar 

  21. Jia, X., Lu, G.: A hybrid Taguchi binary particle swarm optimization for antenna designs. IEEE Ant. Wireless Propag. Lett. 18, 1581–1585 (2019)

    Article  Google Scholar 

  22. Ding, D., Wang, G.: Modified multiobjective evolutionary algorithm based on decomposition for antenna design. IEEE Trans. Ant. Propag. 61, 5301–5307 (2013)

    Article  Google Scholar 

  23. Zhang, H., Bai, B., Zheng, J., Zhou, Y.: Optimal design of sparse array for ultrasonic total focusing method by binary particle swarm optimization. IEEE Access 8, 111945–111953 (2020)

    Article  Google Scholar 

  24. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1996)

    Book  Google Scholar 

  25. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft. Comput. 22, 387–408 (2018)

    Article  Google Scholar 

  26. Jiang, Z.J., Zhao, S., Chen, Y., Cui, T.J.: Beamforming optimization for time-modulated circular-aperture grid array with DE algorithm. IEEE Ant. Wireless Propag. Lett. 17, 2434–2438 (2018)

    Article  Google Scholar 

  27. Baumgartner, P., et al.: Multi-objective optimization of Yagi-Uda antenna applying enhanced firefly algorithm with adaptive cost function. IEEE Trans. Mag. 54, article no. 8000504 (2018)

    Google Scholar 

  28. Mostafa, R.R., Gaheen, M.A., El-Aziz, M.A., Al-Betar, Ewees, A.A.: An improved gorilla troops optimizer for global optimization problems A.A. Knowl.-Based Syst. 269, paper No. 110462 (2023)

    Google Scholar 

  29. Ram, G., Mandal, D., Kar, R., Ghoshal, S.P.: Cat swarm optimization as applied to time-modulated concentric circular antenna array: analysis and comparison with other stochastic optimization methods. IEEE Trans. Antennas Propag. 63, 4180–4183 (2015)

    Article  Google Scholar 

  30. Easum, J.A., Nagar, J., Werner, P.L., Werner, D.H.: Efficient multi-objective antenna optimization with tolerance analysis through the use of surrogate models. IEEE Trans. Ant. Prop. 66, 6706–6715 (2018)

    Article  Google Scholar 

  31. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Opt. 13, 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  32. Chen, C., Liu, J., Xu P.: Comparison of infill sampling criteria based on Kriging surrogate model. Sc. Rep. 12, Art. No. 678 (2022)

    Google Scholar 

  33. De Villiers, D.I.L., Couckuyt, I., Dhaene T.: Multi-objective optimization of reflector antennas using kriging and probability of improvement. In: International Symposium on Antennas and Propagation, San Diego, USA, pp. 985–986 (2017)

    Google Scholar 

  34. Qin, J., Dong, W., Wang, M.: Fast multi-objective optimization of multi-parameter antenna structures based on improved BPNN surrogate model. IEEE Access 7, 77692–77701 (2019)

    Article  Google Scholar 

  35. Hu, C., Zeng, S., Li C.: A framework of global exploration and local exploitation using surrogates for expensive optimization. Knowl.-Based Syst. 280, paper No. 111018 (2023)

    Google Scholar 

  36. Xiao, S., et al.: Multi-objective Pareto optimization of electromagnetic devices exploiting kriging with Lipschitzian optimized expected improvement. IEEE Trans. Magn. 54, paper No. 7001704 (2018)

    Google Scholar 

  37. Koziel, S., Pietrenko-Dabrowska, A.: Performance-Driven Surrogate Modeling of High-Frequency Structures. Springer, New York (2020)

    Book  Google Scholar 

  38. Pietrenko-Dabrowska, A., Koziel, S.: Antenna modeling using variable-fidelity EM simulations and constrained co-kriging. IEEE Access 8, 91048–91056 (2020)

    Article  Google Scholar 

  39. Pietrenko-Dabrowska, A., Koziel, S.: Generalized formulation of response features for reliable optimization of antenna input characteristics. IEEE Trans. Ant. Propag. 70, 3733–3748 (2021)

    Article  Google Scholar 

  40. Pietrenko-Dabrowska, A., Koziel, S.: Simulation-driven antenna modeling by means of response features and confined domains of reduced dimensionality. IEEE Access 8, 228942–228954 (2020)

    Article  Google Scholar 

  41. Pietrenko-Dabrowska, A., Koziel, S., Ullah U.: Reduced-cost two-level surrogate antenna modeling using domain confinement and response features. Sc. Rep. 12, Art. No. 4667 (2022)

    Google Scholar 

  42. Koziel, S.: Fast simulation-driven antenna design using response-feature surrogates. Int. J. RF & Micr. CAE 25, 394–402 (2015)

    Article  Google Scholar 

  43. Kennedy, M.C., O’Hagan, A.: Predicting the output from complex computer code when fast approximations are available. Biometrika 87, 1–13 (2000)

    Article  MathSciNet  Google Scholar 

  44. Vinod Chandra, S.S., Anand, H.S.: Nature inspired meta heuristic algorithms for optimization problems. Computing 104, 251–269 (2022)

    Google Scholar 

  45. Chen, Y.-C., Chen, S.-Y., Hsu, P.: Dual-band slot dipole antenna fed by a coplanar waveguide. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, pp. 3589–3592 (2006)

    Google Scholar 

  46. Consul, P.: Triple band gap coupled microstrip U-slotted patch antenna using L-slot DGS for wireless applications. In: Communication, Control and Intelligent Systems (CCIS), Mathura, India, pp. 31–34 (2015)

    Google Scholar 

  47. CST Microwave Studio, ver. 2021, Dassault Systemes, France (2021)

    Google Scholar 

  48. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods, MPS-SIAM Series on Optimization (2000)

    Google Scholar 

  49. Liu, J., Han, Z., Song, W.: Comparison of infill sampling criteria in kriging-based aerodynamic optimization. In: 28thInternational Congress of the Aeronautical Sciences, Brisbane, Australia, pp. 1–10, 23–28 September 2012

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dassault Systemes, France, for making CST Microwave Studio available. This work is partially supported by the Icelandic Centre for Research (RANNIS) Grant 239858 and by National Science Centre of Poland Grant 2022/47/B/ST7/00072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pietrenko-Dabrowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pietrenko-Dabrowska, A., Koziel, S., Leifsson, L. (2024). Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-fidelity EM Analysis. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63775-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63774-2

  • Online ISBN: 978-3-031-63775-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics