Abstract
In this contribution, we developed a software tool for collecting information on the data traffic via control plane of an operating optical network. From this data, demand matrix elements were calculated and used to numerically estimate the edge occupancy in the optical network studied. For this purpose, a detailed network model was formulated with cost function and constraints. The formulated network model leads to an optimization problem, which was efficiently solved by meta-heuristic algorithms. Finally, statistical methods were used to model forecasting, in terms of the probability of the edge occupancy, under a Markov process approximation. Additionally, on the basis of the numerical results obtained, the scalability of the applied heuristic and statistical methods was analyzed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chatterjee, B.C., Fadini, W., Oki, E.: A spectrum allocation scheme based on first-last-exact fit policy for elastic optical networks. J. Netw. Comput. Appl. 68, 164–172 (2016)
Ejaz, W., Sharma, S.K., Saadat, S., Naeem, M., Anpalagan, A., Chughtai, N.: A comprehensive survey on resource allocation for Cran in 5G and beyond networks. J. Netw. Comput. Appl. 160, 102638 (2020)
Hartfiel, D.: Markov Set-Chains. Springer, New York (1998). https://doi.org/10.1007/BFb0094586
ILOG: CPLEX 11.0 User’s Manual. ILOG (2007)
Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)
Khodashenas, P.S., et al.: Comparison of spectral and spatial super-channel allocation schemes for SDM networks. J. Lightwave Technol. 34(11), 2710–2716 (2016). https://opg.optica.org/jlt/abstract.cfm?URI=jlt-34-11-2710
Klinkowski, M., Walkowiak, K.: An efficient optimization framework for solving RSSA problems in spectrally and spatially flexible optical networks. IEEE/ACM Trans. Netw. 27(4), 1474-1486 (2019). https://doi.org/10.1109/TNET.2019.2922761
Klinkowski, M., Lechowicz, P., Walkowiak, K.: Survey of resource allocation schemes and algorithms in spectrally-spatially flexible optical networking. Opt. Switch. Netw. 27, 58–78 (2018)
Kozdrowski, S., Żotkiewicz, M., Sujecki, S.: Ultra-wideband WDM optical network optimization. Photonics 7(1) (2020). https://doi.org/10.3390/photonics7010016
Kozdrowski, S., Sliwka, P., Sujecki, S.: Modeling traffic forecasts with probability in DWDM optical networks. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12745, pp. 365–378. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77970-2_28
Lee, T., Judge, G., Zellner, A.: Estimating the Parameters of the Markov Probability Model from Aggregate Time Series Data. North-Holland Pub. Co., Amsterdam (1970)
Khorsandi, B.M., Raffaelli, C.: BBU location algorithms for survivable 5G c-ran over WDM. Comput. Netw. 144 (2018). https://doi.org/10.1016/j.comnet.2018.07.026
Khorsandi, B.M., Tonini, F., Raffaelli, C.: Design methodologies and algorithms for survivable c-ran, 106–111 (2018). https://doi.org/10.23919/ONDM.2018.8396115
Nakayama, Y., et al.: Efficient DWBA algorithm for TWDM-PON with mobile fronthaul in 5G networks. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp. 1–6. IEEE Press (2017). https://doi.org/10.1109/GLOCOM.2017.8254768
Patri, S.K., Autenrieth, A., Elbers, J.P., Machuca, C.M.: Planning optical networks for unexpected traffic growth. In: 2020 European Conference on Optical Communications (ECOC), pp. 1–4 (2020). https://doi.org/10.1109/ECOC48923.2020.9333215
Poturała, A., Konieczka, M., Śliwka, P., Sujecki, S., Kozdrowski, S.: Numerical and statistical probability distribution transformation for modeling traffic in optical networks. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2022. LNCS, vol. 13352, pp. 383–397. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08757-8_32
Salman, S., Alaswad, S.: Alleviating road network congestion: traffic pattern optimization using Markov chain traffic assignment. Comput. Oper. Res. 99, 191–205 (2018). https://www.sciencedirect.com/science/article/pii/S0305054818301692
Sliwka, P.: Markov (set) chains application to predict mortality rates using extended Milevsky-Promislov generalized mortality models. J. Appl. Stat. 49(15), 3868–3888 (2022). https://doi.org/10.1080/02664763.2021.1967891
Sliwka, P.: Markov (set) chains application to predict mortality rates using extended Milevsky-Promislov generalized mortality models. J. Appl. Stat. (2021). https://doi.org/10.1080/02664763.2021.1967891
Sliwka, P., Swistowska, A.: Economic Forecasting Methods with the R Package. UKSW, Warszawa (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Krysztofik, P., Grzelak, B., Śliwka, P., Sujecki, S., Kozdrowski, S. (2024). A Novel Bandwidth Occupancy Forecasting Method for Optical Networks. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-63775-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63774-2
Online ISBN: 978-3-031-63775-9
eBook Packages: Computer ScienceComputer Science (R0)