[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Bandwidth Occupancy Forecasting Method for Optical Networks

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

In this contribution, we developed a software tool for collecting information on the data traffic via control plane of an operating optical network. From this data, demand matrix elements were calculated and used to numerically estimate the edge occupancy in the optical network studied. For this purpose, a detailed network model was formulated with cost function and constraints. The formulated network model leads to an optimization problem, which was efficiently solved by meta-heuristic algorithms. Finally, statistical methods were used to model forecasting, in terms of the probability of the edge occupancy, under a Markov process approximation. Additionally, on the basis of the numerical results obtained, the scalability of the applied heuristic and statistical methods was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chatterjee, B.C., Fadini, W., Oki, E.: A spectrum allocation scheme based on first-last-exact fit policy for elastic optical networks. J. Netw. Comput. Appl. 68, 164–172 (2016)

    Google Scholar 

  2. Ejaz, W., Sharma, S.K., Saadat, S., Naeem, M., Anpalagan, A., Chughtai, N.: A comprehensive survey on resource allocation for Cran in 5G and beyond networks. J. Netw. Comput. Appl. 160, 102638 (2020)

    Google Scholar 

  3. Hartfiel, D.: Markov Set-Chains. Springer, New York (1998). https://doi.org/10.1007/BFb0094586

    Book  Google Scholar 

  4. ILOG: CPLEX 11.0 User’s Manual. ILOG (2007)

    Google Scholar 

  5. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)

    Google Scholar 

  6. Khodashenas, P.S., et al.: Comparison of spectral and spatial super-channel allocation schemes for SDM networks. J. Lightwave Technol. 34(11), 2710–2716 (2016). https://opg.optica.org/jlt/abstract.cfm?URI=jlt-34-11-2710

  7. Klinkowski, M., Walkowiak, K.: An efficient optimization framework for solving RSSA problems in spectrally and spatially flexible optical networks. IEEE/ACM Trans. Netw. 27(4), 1474-1486 (2019). https://doi.org/10.1109/TNET.2019.2922761

  8. Klinkowski, M., Lechowicz, P., Walkowiak, K.: Survey of resource allocation schemes and algorithms in spectrally-spatially flexible optical networking. Opt. Switch. Netw. 27, 58–78 (2018)

    Google Scholar 

  9. Kozdrowski, S., Żotkiewicz, M., Sujecki, S.: Ultra-wideband WDM optical network optimization. Photonics 7(1) (2020). https://doi.org/10.3390/photonics7010016

  10. Kozdrowski, S., Sliwka, P., Sujecki, S.: Modeling traffic forecasts with probability in DWDM optical networks. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12745, pp. 365–378. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77970-2_28

    Chapter  Google Scholar 

  11. Lee, T., Judge, G., Zellner, A.: Estimating the Parameters of the Markov Probability Model from Aggregate Time Series Data. North-Holland Pub. Co., Amsterdam (1970)

    Google Scholar 

  12. Khorsandi, B.M., Raffaelli, C.: BBU location algorithms for survivable 5G c-ran over WDM. Comput. Netw. 144 (2018). https://doi.org/10.1016/j.comnet.2018.07.026

  13. Khorsandi, B.M., Tonini, F., Raffaelli, C.: Design methodologies and algorithms for survivable c-ran, 106–111 (2018). https://doi.org/10.23919/ONDM.2018.8396115

  14. Nakayama, Y., et al.: Efficient DWBA algorithm for TWDM-PON with mobile fronthaul in 5G networks. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp. 1–6. IEEE Press (2017). https://doi.org/10.1109/GLOCOM.2017.8254768

  15. Patri, S.K., Autenrieth, A., Elbers, J.P., Machuca, C.M.: Planning optical networks for unexpected traffic growth. In: 2020 European Conference on Optical Communications (ECOC), pp. 1–4 (2020). https://doi.org/10.1109/ECOC48923.2020.9333215

  16. Poturała, A., Konieczka, M., Śliwka, P., Sujecki, S., Kozdrowski, S.: Numerical and statistical probability distribution transformation for modeling traffic in optical networks. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2022. LNCS, vol. 13352, pp. 383–397. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08757-8_32

    Chapter  Google Scholar 

  17. Salman, S., Alaswad, S.: Alleviating road network congestion: traffic pattern optimization using Markov chain traffic assignment. Comput. Oper. Res. 99, 191–205 (2018). https://www.sciencedirect.com/science/article/pii/S0305054818301692

  18. Sliwka, P.: Markov (set) chains application to predict mortality rates using extended Milevsky-Promislov generalized mortality models. J. Appl. Stat. 49(15), 3868–3888 (2022). https://doi.org/10.1080/02664763.2021.1967891

  19. Sliwka, P.: Markov (set) chains application to predict mortality rates using extended Milevsky-Promislov generalized mortality models. J. Appl. Stat. (2021). https://doi.org/10.1080/02664763.2021.1967891

  20. Sliwka, P., Swistowska, A.: Economic Forecasting Methods with the R Package. UKSW, Warszawa (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Kozdrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krysztofik, P., Grzelak, B., Śliwka, P., Sujecki, S., Kozdrowski, S. (2024). A Novel Bandwidth Occupancy Forecasting Method for Optical Networks. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63775-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63774-2

  • Online ISBN: 978-3-031-63775-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics