[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Best of Both Worlds: Solving the Cyclic Bandwidth Problem by Combining Pre-existing Knowledge and Constraint Programming Techniques

  • Conference paper
  • First Online:
Computational Science – ICCS 2024 (ICCS 2024)

Abstract

Given an optimization problem, combining knowledge from both (i) structural or algorithmic known results and (ii) new solving techniques, helps gain insight and knowledge on the aforementioned problem by tightening the gap between lower and upper bounds on the sought optimal value. Additionally, this gain may be further improved by iterating (i) and (ii) until a fixed point is reached.

In this paper, we illustrate the above through the classical Cyclic Bandwidth problem, an optimization problem which takes as input an undirected graph \(G=(V,E)\) with \(|V|=n\), and asks for a labeling \(\varphi \) of V in which every vertex v takes a unique value \(\varphi (v)\in [1;n]\), in such a way that \(B_c(G,\varphi )=\max \{\min _{uv\in E(G)}\{|\varphi (u)-\varphi (v)|,n-|\varphi (u)-\varphi (v)|\}\}\), called the cyclic bandwidth of G, is minimized.

Using the classic benchmark from the Harwell-Boeing sparse matrix collection introduced in [16], we show how to combine (i) previous results from the Cyclic Bandwidth literature, and (ii) new solving techniques, which we first present, and then implement, starting from the best results obtained in step (i). We show that this process allows us to determine the optimal cyclic bandwidth value for half of the instances of our benchmark, and improves the best known bounds for a large number of the remaining instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    see, e.g., https://math.nist.gov/MatrixMarket/collections/hb.html and https://sparse.tamu.edu/HB

  2. 2.

    A global constraint provides some abstractions to improve expressiveness, but also are treated more efficiently by the solver using some dedicated algorithms.

References

  1. Apt, K.R., Monfroy, É.: Constraint programming viewed as rule-based programming. Theory Pract. Log. Program. 1(6), 713–750 (2001)

    Article  MathSciNet  Google Scholar 

  2. Chinn, P.Z., Chvátalová, J., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and matrices - a survey. J. Graph Theor. 6(3), 223–254 (1982)

    Article  MathSciNet  Google Scholar 

  3. Chung, F.R.: Labelings of graphs. Sel. Top. Graph Theor. 3, 151–168 (1988)

    MathSciNet  Google Scholar 

  4. Déprés, H., Fertin, G., Monfroy, E.: Improved lower bounds for the cyclic bandwidth problem. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12742, pp. 555–569. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77961-0_45

    Chapter  Google Scholar 

  5. Harary, F., Manvel, B.: On the number of cycles in a graph. Matematickỳ časopis 21(1), 55–63 (1971)

    MathSciNet  Google Scholar 

  6. Harper, L.H.: Optimal assignments of numbers to vertices. J. Soc. Ind. Appl. Math. 12(1), 131–135 (1964)

    Article  MathSciNet  Google Scholar 

  7. van Hoeve, W.J.: The all different constraint: a survey. CoRR cs.PL/0105015 (2001). https://arxiv.org/abs/cs/0105015

  8. Hromkovič, J., Müller, V., Sýkora, O., Vrťo, I.: On embedding interconnection networks into rings of processors. In: Etiemble, D., Syre, J.-C. (eds.) PARLE 1992. LNCS, vol. 605, pp. 51–62. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55599-4_80

    Chapter  Google Scholar 

  9. Lam, P.C.B., Shiu, W.C., Chan, W.H.: Characterization of graphs with equal bandwidth and cyclic bandwidth. Discret. Math. 242(1–3), 283–289 (2002)

    Article  MathSciNet  Google Scholar 

  10. Lecoutre, C.: Optimization of simple tabular reduction for table constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 128–143. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1_9

    Chapter  Google Scholar 

  11. Leung, J.Y., Vornberger, O., Witthoff, J.D.: On some variants of the bandwidth minimization problem. SIAM J. Comput. 13(3), 650–667 (1984)

    Article  MathSciNet  Google Scholar 

  12. Lin, Y.: A level structure approach on the bandwidth problem for special graphs. Ann. N. Y. Acad. Sci. 576(1), 344–357 (1989)

    Article  MathSciNet  Google Scholar 

  13. Lin, Y.: The cyclic bandwidth problem. Syst. Sci. Math. Sci. 7 (1994)

    Google Scholar 

  14. Lin, Y.: Minimum bandwidth problem for embedding graphs in cycles. Networks 29(3), 135–140 (1997)

    Article  MathSciNet  Google Scholar 

  15. Martí, R., Campos, V., Piñana, E.: A branch and bound algorithm for the matrix bandwidth minimization. Eur. J. Oper. Res. 186, 513–528 (2008)

    Article  MathSciNet  Google Scholar 

  16. Martí, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse matrix with tabu search. Eur. J. Oper. Res. 135, 450–459 (2001)

    Article  MathSciNet  Google Scholar 

  17. Mladenovic, N., Urosevic, D., Pérez-Brito, D., García-González, C.: Variable neighbourhood search for bandwidth reduction. Eur. J. Oper. Res. 200(1), 14–27 (2010)

    Article  MathSciNet  Google Scholar 

  18. Pop, P., Matei, O., Comes, C.A.: Reducing the bandwidth of a sparse matrix with a genetic algorithm. Optimization 63(12), 1851–1876 (2014)

    Article  MathSciNet  Google Scholar 

  19. Ren, J., Hao, J., Rodriguez-Tello, E.: An iterated three-phase search approach for solving the cyclic bandwidth problem. IEEE Access 7, 98436–98452 (2019)

    Article  Google Scholar 

  20. Ren, J., Hao, J.K., Rodriguez-Tello, E., Li, L., He, K.: A new iterated local search algorithm for the cyclic bandwidth problem. Knowl.-Based Syst. 203, 106136 (2020)

    Article  Google Scholar 

  21. Rodriguez-Tello, E., Hao, J.K., Torres-Jimenez, J.: An improved simulated annealing algorithm for bandwidth minimization. Eur. J. Oper. Res. 185(3), 1319–1335 (2008)

    Article  Google Scholar 

  22. Rodriguez-Tello, E., Romero-Monsivais, H., Ramírez-Torres, G., Lardeux, F.: Tabu search for the cyclic bandwidth problem. Comput. Oper. Res. 57, 17–32 (2015)

    Article  MathSciNet  Google Scholar 

  23. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming, Foundations of Artificial Intelligence, vol. 2. Elsevier (2006)

    Google Scholar 

  24. XCSP3 Team: PyCSP\(^{3}\) v2.2 (2023). https://www.pycsp.org/

  25. Zhou, S.: Bounding the bandwidths for graphs. Theoret. Comput. Sci. 249(2), 357–368 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Vasconcellos-Gaete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fertin, G., Monfroy, E., Vasconcellos-Gaete, C. (2024). Best of Both Worlds: Solving the Cyclic Bandwidth Problem by Combining Pre-existing Knowledge and Constraint Programming Techniques. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63775-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63774-2

  • Online ISBN: 978-3-031-63775-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics