Abstract
The hyperspectral unmixing procedure allows the extraction of different material information (endmembers) and their abundances from pixel spectra of the hyperspectral image for further analysis. An extensive study of papers on hyperspectral unmixing methods that use variational autoencoders, deep convolutional networks, or visual transformers shows a lack of diversity in the hyperspectral imaging (HSI) datasets. In this paper, we propose using a modified U-Net architecture of a deep convolutional neural network to analyze a new UAV-gathered HSI dataset for crop health analysis. Secondly, a data analysis methodology was created to extract a set of endmembers with a variation in the samples from the original HSI data for ground truth creation. Our U-Net model was modified to extract endmember class data at the bottleneck layer, and the SoftMax activation function was used during the decoding phase to extract the abundance map. Multiplication of abundance and endmember matrices reconstructs the HSI upon which the reconstruction losses are calculated. We used an image-patching approach to improve the model’s ability to learn endmember data from the HSI dataset. The model performance was evaluated on our newly created data and openly available hyperspectral datasets such as Washington DC Mall, Samson, and Urban.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, M., et al.: Hyperspectral image classification-traditional to deep models: a survey for future prospects. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 15, 968–999 (2022). https://doi.org/10.1109/jstars.2021.3133021
Dale, L. M., et al.: Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. Appl. Spectrosc. Rev. (2013).https://doi.org/10.1080/05704928.2012.705800
Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Magaz. 1(2), 6–36 (2013). https://doi.org/10.1109/MGRS.2013.2244672
Bioucas-Dias, J.M., et al.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 5(2), 354–379 (2012). https://doi.org/10.1109/JSTARS.2012.2194696
Adão, T., et al.: Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 9(11), 1110 (2017). https://doi.org/10.3390/rs9111110
Mahesh, S., Jayas, D.S., Paliwal, J., White, N.D.G.: Hyperspectral imaging to classify and monitor quality of agricultural materials. J. Stored Prod. Res. 61, 17–26 (2015). https://doi.org/10.1016/j.jspr.2015.01.006
Wang, C., Liu, B., Liu, L., et al.: A review of deep learning used in the hyperspectral image analysis for agriculture. Artif. Intell. Rev. 54, 5205–5253 (2021). https://doi.org/10.1007/s10462-021-10018-y
Paura, V., Marcinkevicius, V.: Benchmark for hyperspectral unmixing algorithm evaluation. Informatica 34(2), 285–315 (2023). https://doi.org/10.15388/23-INFOR522
Bioucas-Dias, J.M., Figueiredo, M.A.T.: Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing. In: 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (2010). https://doi.org/10.1109/WHISPERS.2010.5594963
Iordache, M., Bioucas-Dias, J.M., Plaza, A.: Total variation spatial regularization for sparse Hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 50(11), 4484–4502 (2012). https://doi.org/10.1109/TGRS.2012.2191590
Zhang, S., Li, J., Li, H.-C., Deng, C., Plaza, A.: Spectral–spatial weighted sparse regression for hyperspectral image unmixing. IEEE Trans. Geosci. Remote Sens. 56(6), 3265–3276 (2018). https://doi.org/10.1109/TGRS.2018.2797200
Su, H., Jia, C., Zheng, P., Du, Q.: Superpixel-based weighted collaborative sparse regression and reweighted low-rank representation for hyperspectral image unmixing. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 15, 393–408 (2022). https://doi.org/10.1109/JSTARS.2021.3133428
Wang, X., Zhong, Y., Zhang, L., Xu, Y.: Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 55(11), 6287–6304 (2017). https://doi.org/10.1109/TGRS.2017.2724944
Wang, J.-J., Wang, D.-C., Huang, T.-Z., Huang, J.: Endmember constraint non-negative tensor factorization via total variation for hyperspectral unmixing. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARS (2021). https://doi.org/10.1109/IGARSS47720.2021.9554468
Feng, X.-R., Li, H.-C., Liu, S., Zhang, H.: Correntropy-based autoencoder-like NMF with total variation for hyperspectral unmixing. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022). https://doi.org/10.1109/LGRS.2020.3020896
Borsoi, R.A., Imbiriba, T., Bermudez, J.C.M.: Deep generative endmember modeling: an application to unsupervised spectral unmixing. IEEE Trans. Computat. Imaging 6, 374–384 (2020). https://doi.org/10.1109/TCI.2019.2948726
Han, Z., Hong, D., Gao, L., Zhang, B., Chanussot, J.: deep half-siamese networks for hyperspectral unmixing. IEEE Geosci. Remote Sens. Lett. 18(11), 1996–2000 (2021). https://doi.org/10.1109/LGRS.2020.3011941
Zhao, M., Yan, L., Chen, J.: LSTM-DNN based autoencoder network for nonlinear hyperspectral image unmixing. IEEE J. Select. Topics Signal Process. 15(2), 295–309 (2021). https://doi.org/10.1109/JSTSP.2021.3052361
Chen, J., Li, J., Gamba, P.: A multi-tasks autoencoder hyperspectral unmixing model with information gain based on graph network. In: 2023 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Athens, pp. 1–5 (2023). https://doi.org/10.1109/WHISPERS61460.2023.10430667
Shu, S., Huang, T.-Z., Huang, J.: Dual-channel enhanced decoder network for blind hyperspectral unmixing. IEEE Geosci. Remote Sens. Lett. 21, 5500405(1–5) (2024). https://doi.org/10.1109/LGRS.2023.3338193
Ghosh, P., Roy, S.K., Koirala, B., Rasti, B., Scheunders, P.: Hyperspectral unmixing using transformer network. IEEE Trans. Geosci. Remote Sens. 60, 553511(1–16) (2022). https://doi.org/10.1109/TGRS.2022.3196057
Kokaly, R.F., et al.: USGS Spectral Library Version 7. In: Survey, U.S. Data Series (2017). https://doi.org/10.3133/ds1035
Hyperspectral Datasets. http://lesun.weebly.com/hyperspectral-data-set.html. Accessed 15 Mar 2024
Hyperspectral Images - MultiSpec. https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html. Accessed 15 Mar 2024
Specim AFX10 Hyperspectral Camera. https://www.specim.com/products/specim-afx10/. Accessed 15 Mar 2024
CIE 1931 Color Space. https://en.wikipedia.org/wiki/CIE_1931_color_space/. Accessed 10 Mar 2024
Nascimento, J.M.P., Dias, J.M.B.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. emote Sens. 43(4), 898–910 (2005). https://doi.org/10.1109/TGRS.2005.844293
OneCycleLR. https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html. Accessed 12 Mar 2024
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. arXiv preprint arXiv:1505.04597 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Paura, V., Marcinkevičius, V. (2024). Crop Hyperspectral Dataset Unmixing Using Modified U-Net Model. In: Lupeikienė, A., Ralyté, J., Dzemyda, G. (eds) Digital Business and Intelligent Systems. DB&IS 2024. Communications in Computer and Information Science, vol 2157. Springer, Cham. https://doi.org/10.1007/978-3-031-63543-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-63543-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63542-7
Online ISBN: 978-3-031-63543-4
eBook Packages: Computer ScienceComputer Science (R0)