[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

KeepOriginalAugment: Single Image-Based Better Information-Preserving Data Augmentation Approach

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2024)

Abstract

Advanced image data augmentation techniques play a pivotal role in enhancing the training of models for diverse computer vision tasks. Notably, SalfMix and KeepAugment have emerged as popular strategies, showcasing their efficacy in boosting model performance. However, SalfMix reliance on duplicating salient features poses a risk of overfitting, potentially compromising the model’s generalization capabilities. Conversely, KeepAugment, which selectively preserves salient regions and augments non-salient ones, introduces a domain shift that hinders the exchange of crucial contextual information, impeding overall model understanding. In response to these challenges, we introduce KeepOriginalAugment, a novel data augmentation approach. This method intelligently incorporates the most salient region within the non-salient area, allowing augmentation to be applied to either region. Striking a balance between data diversity and information preservation, KeepOriginalAugment enables models to leverage both diverse salient and non-salient regions, leading to enhanced performance. We explore three strategies for determining the placement of the salient region—minimum, maximum, or random—and investigate swapping perspective strategies to decide which part (salient or non-salient) undergoes augmentation. Our experimental evaluations, conducted on classification datasets such as CIFAR-10, CIFAR-100, and TinyImageNet, demonstrate the superior performance of KeepOriginalAugment compared to existing state-of-the-art techniques. The source code for our KeepOriginalAugment method, along with trained models, is publicly available at https://github.com/kmr2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://docs.opencv.org/3.4/da/dd0/classcv_1_1saliency_1_1StaticSaliencyFineGrained.html.

References

  1. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556 (2014)

  3. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  4. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  7. Wang, X., Shrivastava, A., Gupta, A.: A-fast-RCNN: hard positive generation via adversary for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2606–2615 (2017)

    Google Scholar 

  8. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  9. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)

    Google Scholar 

  10. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Toronto, ON, Canada (2009)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  12. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018)

    Article  Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  14. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  15. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

  16. Yun, S., Han, D., Oh, S., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  17. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: Proceedings of the 36th International Conference on Machine Learning, pp. 6438–6447 (2019)

    Google Scholar 

  18. DeVries, T., Taylor, G.: Improved regularization of convolutional neural networks with cutout. arXiv Preprint arXiv:1708.04552 (2017)

  19. Kumar Singh, K., Jae Lee, Y.: Hide-and-seek: forcing a network to be meticulous for weakly-supervised object and action localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3524–3533 (2017)

    Google Scholar 

  20. Chen, P., Liu, S., Zhao, H., Jia, J.: Gridmask data augmentation. arXiv Preprint arXiv:2001.04086 (2020)

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  22. Qin, J., Fang, J., Zhang, Q., Liu, W., Wang, X., Wang, X.: Resizemix: mixing data with preserved object information and true labels. arXiv Preprint arXiv:2012.11101 (2020)

  23. Zhang, H., Cisse, M., Dauphin, Y., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR 2018. arXiv Preprint arXiv:1710.09412 (2017)

  24. Kim, J., Choo, W., Song, H.: Puzzle mix: exploiting saliency and local statistics for optimal mixup. In: International Conference on Machine Learning, pp. 5275–5285 (2020)

    Google Scholar 

  25. Seo, J., Jung, H., Lee, S.: Self-augmentation: generalizing deep networks to unseen classes for few-shot learning. Neural Netw. 138, 140–149 (2021)

    Article  Google Scholar 

  26. Zeiler, M., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. In: ICLR (2013)

    Google Scholar 

  27. Cubuk, E., Zoph, B., Mane, D., Vasudevan, V., Le, Q.: Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  28. Cubuk, E., Zoph, B., Shlens, J., Le, Q.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  29. Gong, C., Wang, D., Li, M., Chandra, V., Liu, Q.: Keepaugment: a simple information-preserving data augmentation approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1055–1064 (2021)

    Google Scholar 

  30. Choi, J., Lee, C., Lee, D., Jung, H.: SalfMix: a novel single image-based data augmentation technique using a saliency map. Sensors 21, 8444 (2021)

    Article  Google Scholar 

  31. Uddin, A., Monira, M., Shin, W., Chung, T., Bae, S.: SaliencyMix: a saliency guided data augmentation strategy for better regularization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  32. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7, 3 (2015)

    Google Scholar 

  33. Mandal, A., Leavy, S., Little, S.: Dataset diversity: measuring and mitigating geographical bias in image search and retrieval. In: Proceedings of the 1st International Workshop on Trustworthy AI for Multimedia Computing, pp. 19–25 (2021)

    Google Scholar 

  34. Kumar, T., Park, J., Ali, M., Uddin, A., Ko, J., Bae, S.: Binary-classifiers-enabled filters for semi-supervised learning. IEEE Access. 9 167663–167673 (2021)

    Google Scholar 

  35. Kumar, T., Mileo, A., Brennan, R., Bendechache, M.: RSMDA: Random Slices Mixing Data Augmentation. Appl. Sci. 13 1711 (2023)

    Google Scholar 

  36. Turab, M., Kumar, T., Bendechache, M. Saber, T.: Investigating multi-feature selection and ensembling for audio classification. arXiv Preprint arXiv:2206.07511 (2022)

  37. Chandio, A., Shen, Y., Bendechache, M., Inayat, I. Kumar, T.: AUDD: audio Urdu digits dataset for automatic audio Urdu digit recognition. Appl. Sci. 11, 8842 (2021)

    Google Scholar 

  38. Kumar, T., Mileo, A., Brennan, R., Bendechache, M.: Image data augmentation approaches: a comprehensive survey and future directions. arXiv Preprint arXiv:2301.02830 (2023)

  39. Kumar, T., Park, J., Ali, M., Uddin, A., Bae, S.: Class specific autoencoders enhance sample diversity. J. Broadcast Eng. 26, 844–854 (2021)

    Google Scholar 

Download references

Acknowledgment

This research was supported by Science Foundation Ireland under grant numbers 18/CRT/6223 (SFI Centre for Research Training in Artificial intelligence), SFI/12/RC/2289/\(P\_2\) (Insight SFI Research Centre for Data Analytics), 13/RC/2094/\(P\_2\) (Lero SFI Centre for Software) and 13/RC/2106/\(P\_2\) (ADAPT SFI Research Centre for AI-Driven Digital Content Technology). For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teerath Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, T., Mileo, A., Bendechache, M. (2024). KeepOriginalAugment: Single Image-Based Better Information-Preserving Data Augmentation Approach. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 714. Springer, Cham. https://doi.org/10.1007/978-3-031-63223-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63223-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63222-8

  • Online ISBN: 978-3-031-63223-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics