[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Meta-requirements for LLM-Based Knowledge Exploration Tools in Information Systems Research

  • Conference paper
  • First Online:
Design Science Research for a Resilient Future (DESRIST 2024)

Abstract

The problem we address in this paper is that the potential impact of Large Language Models (LLMs) on the research practice in information systems is not well understood. The focus has been on how LLMs could support literature review processes. Therefore, this paper aims to advance knowledge on how Large Language Models (LLMs) could support knowledge exploration through literature reviews. The knowledge contribution consists of meta-requirements that inform the design of LLM-based tools assisting knowledge exploration. The meta-requirements are theoretically justified by scrutinizing established IS literature review methodologies, reported challenges of LLMs and design process experiences. Furthermore, we introduce an LLM supported literature review process model that maps the relationships between the meta-requirements and specific phases of the process model. This work contributes to the field by providing a foundation for designing transparent, controllable, and resource-efficient tools for knowledge exploration, and supporting the rigor of knowledge exploration in information systems research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Austin, J., et al.: Program synthesis with large language models. ArXiv Prepr. Arxiv:210807732 (2021)

    Google Scholar 

  2. Bandara, W., et al.: Achieving rigor in literature reviews: insights from qualitative data analysis and tool-support (2015)

    Google Scholar 

  3. Chang, Y., et al.: A survey on evaluation of large language models. ArXiv Prepr. Arxiv:230703109. (2023)

    Google Scholar 

  4. Chen, M., et al.: Evaluating large language models trained on code. ArXiv Prepr. Arxiv:210703374 (2021)

    Google Scholar 

  5. Davidson, J., Paulus, T., Jackson, K.: Speculating on the future of digital tools for qualitative research. Qualit. Inq. 22(7), 606–610 (2016). https://doi.org/10.1177/1077800415622505

    Article  Google Scholar 

  6. Dobrkovic, A., Döppner, D.A., Iacob, M.-E., van Hillegersberg, J.: Collaborative literature search system: an intelligence amplification method for systematic literature search. In: Chatterjee, S., Dutta, K., Sundarraj, R.P. (eds.) DESRIST 2018. LNCS, vol. 10844, pp. 169–183. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91800-6_12

    Chapter  Google Scholar 

  7. Dwivedi, Y.K., et al.: Opinion paper: “so what if ChatGPT wrote it?” multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manag. 71, 102642 (2023). https://doi.org/10.1016/j.ijinfomgt.2023.102642

    Article  Google Scholar 

  8. Enholm, I.M., et al.: Artificial intelligence and business value: a literature review. Inf. Syst. Front. 24(5), 1709–1734 (2022). https://doi.org/10.1007/s10796-021-10186-w

    Article  Google Scholar 

  9. Fieser, J., Dowden, B.: Epistemic Value (2011). https://iep.utm.edu/epistemic-value/

  10. Galitsky, B.A.: Truth-o-meter: collaborating with llm in fighting its hallucinations (2023)

    Google Scholar 

  11. Goldkuhl, G., Lind, M.: A multi-grounded design research process. In: Winter, R., Zhao, J.L., Aier, S. (eds.) Global Perspectives on Design Science Research, pp. 45–60. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13335-0_4

  12. Gregor, S., Jones, D.: The anatomy of a design theory. J. Assoc. Inf. Syst. 8(5), 312–335 (2007)

    Google Scholar 

  13. Hadi, M.U. et al.: A survey on large language models: Applications, challenges, limitations, and practical usage. Authorea Preprint (2023)

    Google Scholar 

  14. Hendricks, G., et al.: Crossref: the sustainable source of community-owned scholarly metadata. Quant. Sci. Stud. 1(1), 414–427 (2020)

    Article  Google Scholar 

  15. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19(2), 87–92 (2007)

    Google Scholar 

  16. Hevner, A.R., et al.: Design science in information systems research. Mis Q. 28(1), 75–105 (2004)

    Article  Google Scholar 

  17. Jiang, A.Q., et al.: Mistral 7B. ArXiv Prepr. Arxiv:231006825 (2023)

    Google Scholar 

  18. Jin, Q., et al.: Genegpt: augmenting large language models with domain tools for improved access to biomedical information. ArXiv (2023)

    Google Scholar 

  19. Kaddour, J. et al.: Challenges and applications of large language models. ArXiv Prepr. ArXiv230710169. (2023)

    Google Scholar 

  20. Kamnis, S.: Generative pre-trained transformers (GPT) for surface engineering. Surf. Coat. Technol. 466, 129680 (2023)

    Article  Google Scholar 

  21. Kasneci, E., et al.: ChatGPT for good? on opportunities and challenges of large language models for education. Learn. Individ. Differ. 103, 102274 (2023)

    Article  Google Scholar 

  22. Klein, H.K., Myers, M.D.: A set of principles for conducting and evaluating interpretive field studies in information systems. MIS Q. 23(1), 67–94 (1999)

    Article  Google Scholar 

  23. Liu, P., et al.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)

    Article  Google Scholar 

  24. Liu, T. et al.: A token-level reference-free hallucination detection benchmark for free-form text generation. ArXiv Prepr. Arxiv:210408704. (2021)

    Google Scholar 

  25. Liu, W.: Knowledge exploitation, knowledge exploration, and competency trap. Knowl. Process. Manag. 13(3), 144–161 (2006)

    Article  Google Scholar 

  26. Martin, L., et al.: CamemBERT: a tasty French language model. ArXiv Prepr. Arxiv:191103894 (2019)

    Google Scholar 

  27. Meyer, J.G., et al.: ChatGPT and large language models in academia: opportunities and challenges. BioData Min. 16(1), 20 (2023)

    Article  Google Scholar 

  28. Morana, S., et al.: Tool support for design science research—towards a software ecosystem: a report from a DESRIST 2017 workshop. Commun. Assoc. Inf. Syst. 43(1), 17 (2018)

    Google Scholar 

  29. Ngwenyama, O., Rowe, F.: Should we collaborate with AI to conduct literature reviews? changing epistemic values in a flattening world. J. Assoc. Inf. Syst. 25(1), 122–136 (2024)

    Google Scholar 

  30. Nunamaker, J.F., Jr., Briggs, R.O.: Toward a broader vision for Information Systems. ACM Trans. Manag. Inf. Syst. TMIS. 2(4), 20 (2011)

    Google Scholar 

  31. Okoli, C.: A guide to conducting a standalone systematic literature review. Commun. AIS. 37 (2015)

    Google Scholar 

  32. Paulus, T.M., et al.: Digital tools for qualitative research: disruptions and entanglements. Qual. Inq. 23, 10 (2017). https://doi.org/10.1177/1077800417731080

    Article  Google Scholar 

  33. Peffers, K., et al.: Design science research genres: introduction to the special issue on exemplars and criteria for applicable design science research. Eur. J. Inf. Syst. 27(2), 129–139 (2018). https://doi.org/10.1080/0960085X.2018.1458066

    Article  Google Scholar 

  34. Rossi, S., et al.: Augmenting research methods with foundation models and generative AI (2024)

    Google Scholar 

  35. Santoro, G., Usai, A.: Knowledge exploration and ICT knowledge exploitation through human resource management: a study of Italian firms. Manag. Res. Rev. 41(6), 701–715 (2018)

    Article  Google Scholar 

  36. Schwartz, D., Te’eni, D.: AI for knowledge creation, curation, and consumption in context. J. Assoc. Inf. Syst. 25(1), 37–47 (2024)

    Google Scholar 

  37. Sjöström, J.: DeProX: a design process exploration tool. In: Maedche, A., vom Brocke, J., Hevner, A. (eds.) DESRIST 2017. LNCS, vol. 10243, pp. 447–451. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59144-5_29

    Chapter  Google Scholar 

  38. Tripp, A., et al.: Sample-efficient optimization in the latent space of deep generative models via weighted retraining. Adv. Neural. Inf. Process. Syst. 33, 11259–11272 (2020)

    Google Scholar 

  39. Valmeekam, K., et al.: Large Language Models Still Can’t Plan (A Benchmark for LLMs on Planning and Reasoning about Change). ArXiv Prepr. Arxiv:220610498 (2022)

    Google Scholar 

  40. Vom Brocke, J., et al.: Standing on the shoulders of giants: challenges and recommendations of literature search in information systems research. Commun. Assoc. Inf. Syst. 37(1), 9 (2015)

    Google Scholar 

  41. Walls, J.G., et al.: Building an information systems design theory for vigilant EIS. Inf. Syst. Res. 3(1), 36–59 (1992)

    Article  Google Scholar 

  42. Watkins, R.: Guidance for researchers and peer-reviewers on the ethical use of Large Language Models (LLMs) in scientific research workflows. AI Ethics 1–6 (2023)

    Google Scholar 

  43. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: Writing a literature review. MIS Q. xiii—-xxiii (2002)

    Google Scholar 

  44. Wu, T., et al.: A brief overview of ChatGPT: the history, status quo and potential future development. IEEECAA J. Autom. Sin. 10(5), 1122–1136 (2023)

    Article  Google Scholar 

  45. Xu, F.F., et al.: A systematic evaluation of large language models of code. In: Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, pp. 1–10 (2022)

    Google Scholar 

  46. Zhou, C. et al.: Detecting hallucinated content in conditional neural sequence generation. ArXiv Prepr. Arxiv:201102593 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Sjöström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sjöström, J., Cronholm, S. (2024). Meta-requirements for LLM-Based Knowledge Exploration Tools in Information Systems Research. In: Mandviwalla, M., Söllner, M., Tuunanen, T. (eds) Design Science Research for a Resilient Future. DESRIST 2024. Lecture Notes in Computer Science, vol 14621. Springer, Cham. https://doi.org/10.1007/978-3-031-61175-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61175-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61174-2

  • Online ISBN: 978-3-031-61175-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics