[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving Prediction of Mortality in ICU via Fusion of SelectKBest with SMOTE Method and Extra Tree Classifier

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

The healthcare system’s increasing adoption of analytics and advanced computers demonstrates a growing tendency to develop a strong prognostication mechanism based on Artificial Intelligence (AI), utilizing technology to explore hidden relations between data and assessment in medical contexts. Hence, predicting the mortality of Intensive Care Unit (ICU) patients is a vital yet challenging task with significant implications for clinical decision-making in healthcare. This study aims to present an effective approach based on the AutoML framework for building Machine Learning (ML) models to predict mortality. PyCaret was applied as an AutoML framework in this study. ML approaches such as Extra Tree Classifier (ET), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Light Gradient Boosting Machine (LightGBM), Gradient Boosting Classifier (GBC), and Adaptive Boosting (AdaBoost), along with feature selection technique, SMOTE, and Auto Fine Tuned via Grid-Random search (GRS) by the assistance of PyCaret are employed to predict mortality. Results demonstrate that the hybrid (SelectKBest + SMOTE + ET) method achieves the highest AUROC of 93.54% for prediction, outperforming other models.

This research is part of the PID2022-137451OB-I00 project funded by the MCIN/AEI/10.13039/501100011033 and by FSE+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Zamzami, F., Hoda, M., El-Saddik, A.: Light gradient boosting machine for general sentiment classification on short texts: a comparative evaluation. IEEE Access 8, 101840–101858 (2020). https://doi.org/10.1109/ACCESS.2020.2997330

    Article  Google Scholar 

  2. Ampomah, E.K., Qin, Z., Nyame, G.: Evaluation of tree-based ensemble machine learning models in predicting stock price direction of movement. Information 11(6), 332 (2020). https://doi.org/10.3390/INFO11060332

    Article  Google Scholar 

  3. Atashi, A., Ahmadian, L., Rahmatinezhad, Z., Miri, M., Nazeri, N., Eslami, S.: Development of a national core dataset for the Iranian ICU patients outcome prediction: a comprehensive approach. BMJ Health Care Inform. 25(2) (2018). https://doi.org/10.14236/jhi.v25i2.953

  4. Chiu, C.C., Wu, C.M., Chien, T.N., Kao, L.J., Li, C., Jiang, H.L.: Applying an improved stacking ensemble model to predict the mortality of ICU patients with heart failure. J. Clin. Med. 11(21), 6460 (2022). https://doi.org/10.3390/jcm11216460

    Article  Google Scholar 

  5. Choudhury, A., Kosorok, M.R.: Missing data imputation for classification problems. arXiv preprint arXiv:2002.10709 (2020). https://doi.org/10.48550/arXiv.2002.10709

  6. Dash, C.S.K., Behera, A.K., Dehuri, S., Ghosh, A.: An outliers detection and elimination framework in classification task of data mining. Decis. Analytics J. 6, 100164 (2023). https://doi.org/10.1016/j.dajour.2023.100164

    Article  Google Scholar 

  7. Desyani, T., Saifudin, A., Yulianti, Y.: Feature selection based on Naive Bayes for caesarean section prediction. IOP Conf. Ser. Mater. Sci. Eng. 879, 012091 (2020)

    Article  Google Scholar 

  8. El-Rashidy, N., El-Sappagh, S., Abuhmed, T., Abdelrazek, S., El-Bakry, H.M.: Intensive care unit mortality prediction: an improved patient-specific stacking ensemble model. IEEE Access 8, 133541–133564 (2020). https://doi.org/10.1109/ACCESS.2020.3010556

    Article  Google Scholar 

  9. Ellis, R.J., Sander, R.M., Limon, A.: Twelve key challenges in medical machine learning and solutions. Intell. Based Med. (2022). https://doi.org/10.1016/j.ibmed.2022.100068

    Article  Google Scholar 

  10. Ghorbani, R., Ghousi, R., Makui, A., Atashi, A.: A new hybrid predictive model to predict the early mortality risk in intensive care units on a highly imbalanced dataset. IEEE Access 8, 141066–141079 (2020). https://doi.org/10.1109/ACCESS.2020.3013320

    Article  Google Scholar 

  11. Górriz, J.M., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fus. 100, 101945 (2023). https://doi.org/10.1016/j.inffus.2023.101945

    Article  Google Scholar 

  12. Jain, V., Chatterjee, J.M. (eds.): Machine Learning with Health Care Perspective. LAIS, vol. 13, pp. 1–25. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40850-3

    Book  Google Scholar 

  13. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl. Based Syst. 212, 106622 (2021). https://doi.org/10.1016/j.knosys.2020.106622

    Article  Google Scholar 

  14. Joloudari, J.H., Marefat, A., Nematollahi, M.A., Oyelere, S.S., Hussain, S.: Effective class-imbalance learning based on smote and convolutional neural networks. Appl. Sci. 13(6), 4006 (2023). https://doi.org/10.3390/app13064006

    Article  Google Scholar 

  15. Karmaker, S.K., Hassan, M.M., Smith, M.J., Xu, L., Zhai, C., Veeramachaneni, K.: AutoML to date and beyond: challenges and opportunities. ACM Comput. Surv. (CSUR) 54(8), 1–36 (2021). https://doi.org/10.1145/3470918

    Article  Google Scholar 

  16. Khope, S.R., Elias, S.: Strategies of predictive schemes and clinical diagnosis for prognosis using MIMIC-III: a systematic review. Healthcare 11, 710 (2023). https://doi.org/10.3390/healthcare11050710

    Article  Google Scholar 

  17. Liu, J., et al.: Mortality prediction based on imbalanced high-dimensional ICU big data. Comput. Ind. 98, 218–225 (2018). https://doi.org/10.1016/j.compind.2018.01.017

    Article  Google Scholar 

  18. Mansouri, A., Noei, M., Saniee Abadeh, M.: A hybrid machine learning approach for early mortality prediction of ICU patients. Prog. Arti. Intell. 11(4), 333–347 (2022). https://doi.org/10.1007/s13748-022-00288-0

    Article  Google Scholar 

  19. Misra, P., Yadav, A.S.: Impact of preprocessing methods on healthcare predictions. In: Proceedings of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE) (2019). https://doi.org/10.2139/ssrn.3349586

  20. Mustafa, A., Rahimi Azghadi, M.: Automated machine learning for healthcare and clinical notes analysis. Computers 10(2), 24 (2021). https://doi.org/10.3390/computers10020024

    Article  Google Scholar 

  21. Safaei, N., et al.: E-CatBoost: an efficient machine learning framework for predicting ICU mortality using the EICU collaborative research database. PLoS ONE 17(5), e0262895 (2022). https://doi.org/10.1371/journal.pone.0262895

    Article  Google Scholar 

  22. Sharma, S., Chatterjee, S.: Winsorization for robust Bayesian Neural Networks. Entropy 23(11), 1546 (2021). https://doi.org/10.3390/e23111546

    Article  MathSciNet  Google Scholar 

  23. Sulaiman, R., Azeman, N.H., Mokhtar, M.H.H., Mobarak, N.N., Bakar, M.H.A., Bakar, A.A.A.: Hybrid ensemble-based machine learning model for predicting phosphorus concentrations in hydroponic solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 304, 123327 (2024). https://doi.org/10.1016/j.saa.2023.123327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Nematollahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maftoun, M. et al. (2024). Improving Prediction of Mortality in ICU via Fusion of SelectKBest with SMOTE Method and Extra Tree Classifier. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics