Abstract
Heart Rate Variability (HRV) is a measure of the variation in time between successive heartbeats, reflecting the influence of the autonomic nervous system on the heart. It can provide insights into the balance between sympathetic and parasympathetic activity. The relationship between autonomic nervous system function, specifically parasympathetic activity, and certain learning disorders, including dyslexia, is currently under study. In this paper, we propose the use of explainable techniques to explore the relationships between HRV markers and local functional brain activity, estimated by cross-frequency coupling (CFC) from electroencephalography (EEG) signals recorded while auditory stimuli were applied to 7-year-old children. We analyze EEG data to examine the phase-to-phase brainwave coupling and use machine learning tools such as XGBoost and Shapley values to reveal brain regions that most contribute to different HRV features, with a focus on parasympathetic activity. Our findings suggest that HRV features related to stress can explain differential activations in the auditory cortex (Brodmann areas 39 and 40) during auditory stimulation in dyslexic children.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020). https://doi.org/10.1016/j.neucom.2020.05.078
Górriz, J., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023). https://doi.org/10.1016/j.inffus.2023.101945
Teplan, M., et al.: Fundamentals of EEG measurement. Measure. Sci. Rev. 2(2), 1–11 (2002)
Hülsemann, M.J., Naumann, E., Rasch, B.: Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling. Front. Neurosci. 13, 573 (2019)
Butler, L.K., Kiran, S., Tager-Flusberg, H.: Functional near-infrared spectroscopy in the study of speech and language impairment across the life span: a systematic review. Am. J. Speech Lang. Pathol. 29(3), 1674–1701 (2020)
van Ravenswaaij-Arts, C.M., Kollee, L.A., Hopman, J.C., Stoelinga, G.B., van Geijn, H.P.: Heart rate variability. Ann. Intern. Med. 118(6), 436–447 (1993)
Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y.H., Koo, B.-H.: Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 15(3), 235 (2018)
Clays, E., et al.: The perception of work stressors is related to reduced parasympathetic activity. Int. Arch. Occup. Environ. Health 84, 185–191 (2011)
Formoso, M.A., Ortiz, A., Martinez-Murcia, F.J., Gallego, N., Luque, J.L.: Detecting phase-synchrony connectivity anomalies in EEG signals. Application to dyslexia diagnosis. Sensors 21(21), 7061 (2021)
Ortiz, A., Martínez-Murcia, F.J., Formoso, M.A., Luque, J.L., Sánchez, A.: Dyslexia detection from EEG signals using SSA component correlation and convolutional neural networks. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds.) HAIS 2020. LNCS (LNAI), vol. 12344, pp. 655–664. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61705-9_54
Arco, J.E., Gallego-Molina, N.J., Ortiz, A., Arroyo-Alvis, K., López-Pérez, P.J.: Identifying HRV patterns in ECG signals as early markers of dementia. Expert Syst. Appl. 243, 122934 (2024)
Shapley, L.S., et al.: A value for n-person games (1953)
Scheffer-Teixeira, R., Tort, A.B.: On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. eLife 5, e20515 (2016)
Cohen, M.X.: Analyzing Neural Time Series Data: Theory and Practice. MIT Press, Cambridge (2014)
Kimppa, L., Shtyrov, Y., Partanen, E., Kujala, T.: Impaired neural mechanism for online novel word acquisition in dyslexic children. Sci. Rep. 8(1), 12779 (2018). https://doi.org/10.1038/s41598-018-31211-0
Thiede, A., Glerean, E., Kujala, T., Parkkonen, L.: Atypical meg inter-subject correlation during listening to continuous natural speech in dyslexia. Neuroimage 216, 116799 (2020). https://doi.org/10.1016/j.neuroimage.2020.116799
Attaheri, et al.: Infant low-frequency EEG cortical power, cortical tracking and phase-amplitude coupling predicts language a year later (2022). https://doi.org/10.1101/2022.11.02.514963.
Gallego-Molina, N.J., Formoso, M., Ortiz, A., Martínez-Murcia, F.J., Luque, J.L.: Temporal EigenPAC for dyslexia diagnosis. In: Rojas, I., Joya, G., Català, A. (eds.) IWANN 2021. LNCS, vol. 12862, pp. 45–56. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85099-9_4
Fishburn, F.A., Ludlum, R.S., Vaidya, C.J., Medvedev, A.V.: Temporal derivative distribution repair (TDDR): a motion correction method for fNIRS. Neuroimage 184, 171–179 (2019)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Statist. 29, 1189–1232 (2001)
Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)
Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017)
Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, Barth (1909)
Ardila, A., Bernal, B., Rosselli, M.: How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch. Clin. Neuropsychol. 31(1), 112–122 (2016)
Tanaka, S., Honda, M., Sadato, N.: Modality-specific cognitive function of medial and lateral human Brodmann area 6. J. Neurosci. 25(2), 496–501 (2005)
Acknowledgements
This research is part of the PID2022-137461NB-C32, PID2022-137629OA-I00 and PID2022-137451OB-I00 projects, funded by the MICIU/AEI/10.13039/501100011033 and by ESF+ as well as UMA20-FEDERJA-086 (Consejería de Economía y Conocimiento, Junta de Andalucía) and by European Regional Development Funds (ERDF), as well as the BioSiP (TIC-251) research group and Univerisity of Málaga (UMA). This research is also part of the TIC251-G-FEDER project, funded by ERDF/EU. Marco A. Formoso grant PRE2019-087350 is funded by MICIU/AEI/10.13039/501100011033 by “ESF Investing in your future”. Ignacio Rodriguez-Rodríguez is funded by Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Junta de Andalucía.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Formoso, M.A., Gallego-Molina, N.J., Ortiz, A., Rodríguez-Rodríguez, I., Giménez, A. (2024). Explainable Exploration of the Interplay Between HRV Features and EEG Local Connectivity Patterns in Dyslexia. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-61140-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61139-1
Online ISBN: 978-3-031-61140-7
eBook Packages: Computer ScienceComputer Science (R0)