[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Explainable Exploration of the Interplay Between HRV Features and EEG Local Connectivity Patterns in Dyslexia

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

Heart Rate Variability (HRV) is a measure of the variation in time between successive heartbeats, reflecting the influence of the autonomic nervous system on the heart. It can provide insights into the balance between sympathetic and parasympathetic activity. The relationship between autonomic nervous system function, specifically parasympathetic activity, and certain learning disorders, including dyslexia, is currently under study. In this paper, we propose the use of explainable techniques to explore the relationships between HRV markers and local functional brain activity, estimated by cross-frequency coupling (CFC) from electroencephalography (EEG) signals recorded while auditory stimuli were applied to 7-year-old children. We analyze EEG data to examine the phase-to-phase brainwave coupling and use machine learning tools such as XGBoost and Shapley values to reveal brain regions that most contribute to different HRV features, with a focus on parasympathetic activity. Our findings suggest that HRV features related to stress can explain differential activations in the auditory cortex (Brodmann areas 39 and 40) during auditory stimulation in dyslexic children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020). https://doi.org/10.1016/j.neucom.2020.05.078

    Article  Google Scholar 

  2. Górriz, J., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023). https://doi.org/10.1016/j.inffus.2023.101945

    Article  Google Scholar 

  3. Teplan, M., et al.: Fundamentals of EEG measurement. Measure. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  4. Hülsemann, M.J., Naumann, E., Rasch, B.: Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling. Front. Neurosci. 13, 573 (2019)

    Article  Google Scholar 

  5. Butler, L.K., Kiran, S., Tager-Flusberg, H.: Functional near-infrared spectroscopy in the study of speech and language impairment across the life span: a systematic review. Am. J. Speech Lang. Pathol. 29(3), 1674–1701 (2020)

    Article  Google Scholar 

  6. van Ravenswaaij-Arts, C.M., Kollee, L.A., Hopman, J.C., Stoelinga, G.B., van Geijn, H.P.: Heart rate variability. Ann. Intern. Med. 118(6), 436–447 (1993)

    Article  Google Scholar 

  7. Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y.H., Koo, B.-H.: Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 15(3), 235 (2018)

    Article  Google Scholar 

  8. Clays, E., et al.: The perception of work stressors is related to reduced parasympathetic activity. Int. Arch. Occup. Environ. Health 84, 185–191 (2011)

    Article  Google Scholar 

  9. Formoso, M.A., Ortiz, A., Martinez-Murcia, F.J., Gallego, N., Luque, J.L.: Detecting phase-synchrony connectivity anomalies in EEG signals. Application to dyslexia diagnosis. Sensors 21(21), 7061 (2021)

    Article  Google Scholar 

  10. Ortiz, A., Martínez-Murcia, F.J., Formoso, M.A., Luque, J.L., Sánchez, A.: Dyslexia detection from EEG signals using SSA component correlation and convolutional neural networks. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds.) HAIS 2020. LNCS (LNAI), vol. 12344, pp. 655–664. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61705-9_54

    Chapter  Google Scholar 

  11. Arco, J.E., Gallego-Molina, N.J., Ortiz, A., Arroyo-Alvis, K., López-Pérez, P.J.: Identifying HRV patterns in ECG signals as early markers of dementia. Expert Syst. Appl. 243, 122934 (2024)

    Article  Google Scholar 

  12. Shapley, L.S., et al.: A value for n-person games (1953)

    Google Scholar 

  13. Scheffer-Teixeira, R., Tort, A.B.: On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. eLife 5, e20515 (2016)

    Article  Google Scholar 

  14. Cohen, M.X.: Analyzing Neural Time Series Data: Theory and Practice. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  15. Kimppa, L., Shtyrov, Y., Partanen, E., Kujala, T.: Impaired neural mechanism for online novel word acquisition in dyslexic children. Sci. Rep. 8(1), 12779 (2018). https://doi.org/10.1038/s41598-018-31211-0

    Article  Google Scholar 

  16. Thiede, A., Glerean, E., Kujala, T., Parkkonen, L.: Atypical meg inter-subject correlation during listening to continuous natural speech in dyslexia. Neuroimage 216, 116799 (2020). https://doi.org/10.1016/j.neuroimage.2020.116799

    Article  Google Scholar 

  17. Attaheri, et al.: Infant low-frequency EEG cortical power, cortical tracking and phase-amplitude coupling predicts language a year later (2022). https://doi.org/10.1101/2022.11.02.514963.

  18. Gallego-Molina, N.J., Formoso, M., Ortiz, A., Martínez-Murcia, F.J., Luque, J.L.: Temporal EigenPAC for dyslexia diagnosis. In: Rojas, I., Joya, G., Català, A. (eds.) IWANN 2021. LNCS, vol. 12862, pp. 45–56. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85099-9_4

    Chapter  Google Scholar 

  19. Fishburn, F.A., Ludlum, R.S., Vaidya, C.J., Medvedev, A.V.: Temporal derivative distribution repair (TDDR): a motion correction method for fNIRS. Neuroimage 184, 171–179 (2019)

    Article  Google Scholar 

  20. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Statist. 29, 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  21. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  22. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017)

    Google Scholar 

  23. Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, Barth (1909)

    Google Scholar 

  24. Ardila, A., Bernal, B., Rosselli, M.: How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch. Clin. Neuropsychol. 31(1), 112–122 (2016)

    Article  Google Scholar 

  25. Tanaka, S., Honda, M., Sadato, N.: Modality-specific cognitive function of medial and lateral human Brodmann area 6. J. Neurosci. 25(2), 496–501 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of the PID2022-137461NB-C32, PID2022-137629OA-I00 and PID2022-137451OB-I00 projects, funded by the MICIU/AEI/10.13039/501100011033 and by ESF+ as well as UMA20-FEDERJA-086 (Consejería de Economía y Conocimiento, Junta de Andalucía) and by European Regional Development Funds (ERDF), as well as the BioSiP (TIC-251) research group and Univerisity of Málaga (UMA). This research is also part of the TIC251-G-FEDER project, funded by ERDF/EU. Marco A. Formoso grant PRE2019-087350 is funded by MICIU/AEI/10.13039/501100011033 by “ESF Investing in your future”. Ignacio Rodriguez-Rodríguez is funded by Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Formoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Formoso, M.A., Gallego-Molina, N.J., Ortiz, A., Rodríguez-Rodríguez, I., Giménez, A. (2024). Explainable Exploration of the Interplay Between HRV Features and EEG Local Connectivity Patterns in Dyslexia. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics