[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Contrastive Learning of Multivariate Gaussian Distributions of Incremental Classes for Continual Learning

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14674))

  • 648 Accesses

Abstract

Recent advancements in deep learning algorithms have shown remarkable performance on trained tasks, yet they struggle with “catastrophic forgetting” when faced with new tasks, highlighting the need for Continual Learning (CL) methods that update models efficiently without losing prior knowledge. CL models, constrained by limited visibility of the dataset for each task, develop a significant dependency on past tasks, complicating the integration of new information and maintaining robustness against future tasks. This paper proposes a novel CL method that leverages contrastive learning to secure a latent space for future data representation, reducing the dependency on past tasks and enhancing model adaptability. By distinguishing class spaces in the latent domain and re-representing these as sets of means and variances, our method effectively preserves past knowledge while ensuring future robustness. Experimental results show our method surpasses existing CL methods by a significant margin, proving its efficacy in handling information across past, present, and future tasks, thus establishing a robust solution for the challenges of catastrophic forgetting and task dependency in CL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guo, Y., Liu, B., et al.: Online continual learning through mutual information maximization. In: ICML, pp. 8109–8126 (2022)

    Google Scholar 

  2. Zhao, Z., Zhang, Z., et al.: Rethinking gradient projection continual learning: stability/plasticity feature space decoupling. In: CVPR, pp. 3718–3727 (2023)

    Google Scholar 

  3. Buzzega, P., Boschini, M., et al.: Rethinking experience replay: a bag of tricks for continual learning. In: International Conference on Pattern Recognition, pp. 2180–2187 (2021)

    Google Scholar 

  4. Lomonaco, V., Maltoni, D., et al.: Rehearsal-free continual learning over small non-IID batches. In: CVPR Workshops (2020)

    Google Scholar 

  5. Prabhu, A., Torr, P.H.S., Dokania, P.K.: GDumb: a simple approach that questions our progress in continual learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 524–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_31

    Chapter  Google Scholar 

  6. Chaudhry, A., Ranzato, M.A., et al.: Efficient lifelong learning with A-GEM. arXiv preprint arXiv:1812.00420 (2018)

  7. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_33

    Chapter  Google Scholar 

  8. Yoon, J., Madaan, D., et al.: Online coreset selection for rehearsal-based continual learning. arXiv preprint arXiv:2106.01085 (2021)

  9. Rebuffi, S.A., Kolesnikov, A., et al.: iCaRL: incremental classifier and representation learning. In: CVPR, pp. 2001–2010 (2017)

    Google Scholar 

  10. Javed, K., White, M.: Meta-learning representations for continual learning. In: NeuRIPS, vol. 32 (2019)

    Google Scholar 

  11. Gupta, G., Yadav, K., et al.: Look-ahead meta learning for continual learning. In: NeuRIPS, vol. 33, pp. 11588–11598 (2020)

    Google Scholar 

  12. Gallardo, J., Hayes, T.L., et al.: Self-supervised training enhances online continual learning. arXiv preprint arXiv:2103.14010 (2021)

  13. Zhang, M., Wang, T., et al.: Variational prototype replays for continual learning, arXiv preprint arXiv:1905.09447 (2019)

  14. Zhang, B., Guo, Y., et al.: Memory recall: a simple neural network training framework against catastrophic forgetting. IEEE Trans. Neural Netw. Learn. Syst. 33(5), 2010–2022 (2021)

    Article  Google Scholar 

  15. Kirkpatrick, J., Pascanu, R., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  16. Zeng, G., Chen, Y., et al.: Continual learning of context-dependent processing in neural networks. Nat. Mach. Intell. 1(8), 364–372 (2019)

    Article  Google Scholar 

  17. Kim, T.H., Moon, H.J., et al.: Gradient regularization with multivariate distribution of previous knowledge for continual learning. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 359–368 (2022)

    Google Scholar 

  18. Wang, Z., Liu, L., et al.: Continual learning with lifelong vision transformer. In: CVPR, pp. 171–181 (2022)

    Google Scholar 

  19. Riemer, M., Cases, I., et al.: Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910 (2018)

  20. Lopez-Paz, D., Ranzato, M. A.: Gradient episodic memory for continual learning. In: NeuRIPS, vol. 30 (2017)

    Google Scholar 

  21. Aljundi, R., Lin, M., et al.: Gradient based sample selection for online continual learning. In: NeuRIPS, vol. 32 (2019)

    Google Scholar 

  22. Chen, D., Lin, Y., et al.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: AAAI, vol. 34, no. 4, pp. 3438–3445 (2020)

    Google Scholar 

  23. Chaudhry, A., Gordo, A., et al.: Using hindsight to anchor past knowledge in continual learning. In: AAAI, vol. 35, no. 8, pp. 6993–7001 (2021)

    Google Scholar 

  24. Buzzega, P., Boschini, M., et al.: Rethinking experience replay: a bag of tricks for continual learning. In: CVPR, pp. 2180–2187 (2021)

    Google Scholar 

  25. Bang, J., Kim, H., et al.: Rainbow memory: continual learning with a memory of diverse samples. In: CVPR, pp. 8218–8227 (2021)

    Google Scholar 

  26. Buzzega, P., Boschini, M., et al.: Dark experience for general continual learning: a strong, simple baseline. In: NeuRIPS, vol. 33, pp. 15920–15930 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Yonsei Fellow Program funded by Lee Youn Jae, IITP grant funded by the Korea government (MSIT) (No. 2022–0–00113, Developing a Sustainable Collaborative Multi-modal Lifelong Learning Framework), and Air Force Defense Research Sciences Program funded by Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Bae Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moon, HJ., Cho, SB. (2024). Contrastive Learning of Multivariate Gaussian Distributions of Incremental Classes for Continual Learning. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics