[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Enhanced Emotional Interaction in the Metaverse

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14674))

  • 495 Accesses

Abstract

In the current context, as the metaverse emerges as an immersive digital space for social and professional interactions, understanding and appropriately responding to human emotions becomes critical. This paper presents an innovative approach for emotion detection and analysis in virtual environments, combining facial recognition technologies and physiological signal analysis through deep learning algorithms. Thus, this approach enhances interaction and customization in the metaverse, highlighting the importance of addressing these concerns to maximize the potential of emotional detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mystakidis, S.: Metaverse. Encyclopedia 2(1), 486–497 (2022)

    Article  Google Scholar 

  2. Naz, A., Kopper, R., McMahan, R.P., Nadin, M.: Emotional qualities of VR space. In: 2017 IEEE Virtual Reality (VR), pp. 3–11. IEEE (2017)

    Google Scholar 

  3. Jaiswal, A., Raju, A.K., Deb, S.: Facial emotion detection using deep learning. In: 2020 International Conference for Emerging Technology (INCET), pp. 1–5. IEEE (2020)

    Google Scholar 

  4. Egger, M., Ley, M., Hanke, S.: Emotion recognition from physiological signal analysis: a review. Electron. Notes Theor. Comput. Sci. 343, 35–55 (2019)

    Article  Google Scholar 

  5. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)

    Article  Google Scholar 

  6. Costa, A., Rincon, J.A., Carrascosa, C., Julian, V., Novais, P.: Emotions detection on an ambient intelligent system using wearable devices. Future Gener. Comput. Syst. 92, 479–489 (2019)

    Article  Google Scholar 

  7. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  8. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, vol. 18 (2007)

    Google Scholar 

  9. Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. Aggreg. Oper. New Trends Appl. 97(1), 3–104 (2002)

    MathSciNet  Google Scholar 

  10. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  MathSciNet  Google Scholar 

  11. Yager, R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11(1), 49–73 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported with grants TED2021-131295B-C32 and PID2021-123673OB-C31 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, PROMETEO grant CIPROM/2021/077 from the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital - Generalitat Valenciana and Early Research Project grant PAID-06-23 by the Vice Rectorate Office for Research from Universitat Politècnica de València (UPV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Julian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rincon, J.A., Marco-Detchart, C., Julian, V. (2024). Towards Enhanced Emotional Interaction in the Metaverse. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics