Abstract
This paper introduces connectogram modeling of electroencephalography (EEG) signals as a novel approach to represent causal relationships and information flow between different brain regions. Connectograms are graphical representations that map the connectivity between neural nodes or EEG channels through lines and arrows of varying thickness and directionality. Here, inter-channel phase connectivity patterns were analyzed by computing Granger causality to quantify the magnitude and direction of causal effects. The resulting weighted, directed connectograms displayed differences in functional integration between individuals with developmental dyslexia versus fluent readers when processing 4.8 Hz amplitude-modulated noise, designed to elicit speech encoding mechanisms. Machine learning classification was subsequently implemented to distinguish participant groups based on characteristic connectivity fingerprints. The methodology integrates signal filtering, instantaneous phase analysis via Hilbert transform, Granger causality computation between all channel pairs, automated feature selection using novel mutual information filtering, construction of directed weighted connectograms, and Gradient Boosting classification. Classification analysis successfully discriminates connectivity patterns, directly implicating theta and gamma bands (AUC 0.929 and 0.911, respectively) resulting from rhythmic auditory stimulation. Results demonstrated altered cross-regional theta and gamma band oscillatory connectivity in dyslexia during foundational auditory processing, providing perspectives on multisensory and temporal encoding inefficiencies underlying language difficulties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974). https://doi.org/10.1007/978-1-4612-1694-0_16
Artoni, F., et al.: High gamma response tracks different syntactic structures in homophonous phrases. Sci. Rep. 10(1), 7537 (2020). https://doi.org/10.1038/s41598-020-64375-9
Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009). https://doi.org/10.1038/nrn2575
González, G.F., et al.: Graph analysis of EEG resting state functional networks in dyslexic readers. Clin. Neurophysiol. 127(9), 3165–3175 (2016). https://doi.org/10.1016/j.clinph.2016.06.023
Górriz, J., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023). https://doi.org/10.1016/j.inffus.2023.101945
Goswami, U.: A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 15(1), 3–10 (2011). https://doi.org/10.1016/j.tics.2010.10.001
Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econometr. J. Economet. Soc. 37(3), 424–438 (1969). https://doi.org/10.2307/1912791
Guha, R., Ghosh, K.K., Bhowmik, S., Sarkar, R.: Mutually informed correlation coefficient (MICC)-a new filter based feature selection method. In: 2020 IEEE Calcutta conference (CALCON), pp. 54–58. IEEE (2020). https://doi.org/10.1109/calcon49167.2020.9106516
Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020). https://doi.org/10.1016/j.neucom.2020.05.078
Hu, F., Wang, H., Wang, Q., Feng, N., Chen, J., Zhang, T.: Acrophobia quantified by EEG based on CNN incorporating granger causality. Int. J. Neural Syst. 31(03), 2050069 (2021). https://doi.org/10.1088/1741-2552/abcdbd
Marko, M., Cimrová, B., Riečanskỳ, I.: Neural theta oscillations support semantic memory retrieval. Sci. Rep. 9(1), 17667 (2019). https://doi.org/10.1038/s41598-019-53813-y
Meeuwissen, E.B., Takashima, A., Fernández, G., Jensen, O.: Evidence for human Fronto-central gamma activity during long-term memory encoding of word sequences. PLoS ONE 6(6), e21356 (2011). https://doi.org/10.1371/journal.pone.0021356
Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., Carreiras, M.: Out-of-synchrony speech entrainment in developmental dyslexia. Hum. Brain Mapp. 37(8), 2767–2783 (2016). https://doi.org/10.1002/hbm.23206
Ortiz, A., Martinez-Murcia, F.J., Luque, J.L., Giménez, A., Morales-Ortega, R., Ortega, J.: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach. Int. J. Neural Syst. 30(07), 2050029 (2020). https://doi.org/10.1142/s012906572050029x
Peterson, R.L., Pennington, B.F.: Developmental dyslexia. The Lancet 379(9830), 1997–2007 (2012). https://doi.org/10.1016/s0140-6736(12)60198-6
Poeppel, D., Idsardi, W.J., Van Wassenhove, V.: Speech perception at the interface of neurobiology and linguistics. Philos. Trans. Royal Soc. B. Biol. Sci. 363(1493), 1071–1086 (2008). https://doi.org/10.1093/oso/9780199561315.003.0011
Pugh, K.R., et al.: Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Ment. Retard. Dev. Disabil. Res. Rev. 6(3), 207–213 (2000). https://doi.org/10.1002/1098-2779(2000)
Rodríguez-Rodríguez, I., Ortiz, A., Gallego-Molina, N.J., Formoso, M., Woo, W.L.: Eeg interchannel causality to identify source/sink phase connectivity patterns in developmental dyslexia. Int. J. Neural Syst. 33(04), 2350020 (2023). https://doi.org/10.1142/s012906572350020x
Romeo, R.R., Segaran, J., Leonard, J.A., Robinson, S.T., West, M.R., Mackey, A.P., Yendiki, A., Rowe, M.L., Gabrieli, J.D.: Language exposure relates to structural neural connectivity in childhood. J. Neurosci. 38(36), 7870–7877 (2018). https://doi.org/10.1523/jneurosci.0484-18.2018
Schmidt, C., Piper, D., Pester, B., Mierau, A., Witte, H.: Tracking the reorganization of module structure in time-varying weighted brain functional connectivity networks. Int. J. Neural Syst. 28(04), 1750051 (2018). https://doi.org/10.1142/s0129065717500514
Spironelli, C., Angrilli, A.: Developmental aspects of language lateralization in delta, theta, alpha and beta EEG bands. Biol. Psychol. 85(2), 258–267 (2010). https://doi.org/10.1016/j.biopsycho.2010.07.011
Summerfield, C., Mangels, J.A.: Coherent theta-band EEG activity predicts item-context binding during encoding. Neuroimage 24(3), 692–703 (2005). https://doi.org/10.1016/j.neuroimage.2004.09.012
Wang, L., Zhu, Z., Bastiaansen, M.: Integration or predictability? Further specification of the functional role of EEG gamma-band oscillations during language comprehension. Front. Psychol. 3(187), 00187 (2012). https://doi.org/10.3389/fpsyg.2012.00187
Yaqub, M.A., Hong, K.S., Zafar, A., Kim, C.S.: Control of transcranial direct current stimulation duration by assessing functional connectivity of near-infrared spectroscopy signals. Int. J. Neural Syst. 32(01), 2150050 (2022). https://doi.org/10.3390/bioengineering10070810
Acknowledgments
This research is part of the PID2022-137461NB-C32, PID2022-137629OA-I00 and PID2022-137451OB-I00 projects, funded by the MICIU/AEI/10.13039/501100011033 and by ERDF/EU, as well as UMA20-FEDERJA-086 (Consejería de Economía y Conocimiento, Junta de Andalucía) and by European Regional Development Funds (ERDF). This research is part of the TIC251-G-FEDER project, funded by ERDF/EU. M.A.F. grant PRE2019-087350 funded by MICIU/AEI/10.13039/501100011033 by “ESF Investing in your future”, I.R.-R. funded by Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Junta de Andalucía.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rodríguez-Rodríguez, I., Ortiz, A., Formoso, M.A., Gallego-Molina, N.J., Luque, J.L. (2024). Causal Mechanisms of Dyslexia via Connectogram Modeling of Phase Synchrony. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-61140-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61139-1
Online ISBN: 978-3-031-61140-7
eBook Packages: Computer ScienceComputer Science (R0)