[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Causal Mechanisms of Dyslexia via Connectogram Modeling of Phase Synchrony

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

This paper introduces connectogram modeling of electroencephalography (EEG) signals as a novel approach to represent causal relationships and information flow between different brain regions. Connectograms are graphical representations that map the connectivity between neural nodes or EEG channels through lines and arrows of varying thickness and directionality. Here, inter-channel phase connectivity patterns were analyzed by computing Granger causality to quantify the magnitude and direction of causal effects. The resulting weighted, directed connectograms displayed differences in functional integration between individuals with developmental dyslexia versus fluent readers when processing 4.8 Hz amplitude-modulated noise, designed to elicit speech encoding mechanisms. Machine learning classification was subsequently implemented to distinguish participant groups based on characteristic connectivity fingerprints. The methodology integrates signal filtering, instantaneous phase analysis via Hilbert transform, Granger causality computation between all channel pairs, automated feature selection using novel mutual information filtering, construction of directed weighted connectograms, and Gradient Boosting classification. Classification analysis successfully discriminates connectivity patterns, directly implicating theta and gamma bands (AUC 0.929 and 0.911, respectively) resulting from rhythmic auditory stimulation. Results demonstrated altered cross-regional theta and gamma band oscillatory connectivity in dyslexia during foundational auditory processing, providing perspectives on multisensory and temporal encoding inefficiencies underlying language difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974). https://doi.org/10.1007/978-1-4612-1694-0_16

  2. Artoni, F., et al.: High gamma response tracks different syntactic structures in homophonous phrases. Sci. Rep. 10(1), 7537 (2020). https://doi.org/10.1038/s41598-020-64375-9

    Article  Google Scholar 

  3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009). https://doi.org/10.1038/nrn2575

    Article  Google Scholar 

  4. González, G.F., et al.: Graph analysis of EEG resting state functional networks in dyslexic readers. Clin. Neurophysiol. 127(9), 3165–3175 (2016). https://doi.org/10.1016/j.clinph.2016.06.023

    Article  Google Scholar 

  5. Górriz, J., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023). https://doi.org/10.1016/j.inffus.2023.101945

    Article  Google Scholar 

  6. Goswami, U.: A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 15(1), 3–10 (2011). https://doi.org/10.1016/j.tics.2010.10.001

    Article  Google Scholar 

  7. Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econometr. J. Economet. Soc. 37(3), 424–438 (1969). https://doi.org/10.2307/1912791

  8. Guha, R., Ghosh, K.K., Bhowmik, S., Sarkar, R.: Mutually informed correlation coefficient (MICC)-a new filter based feature selection method. In: 2020 IEEE Calcutta conference (CALCON), pp. 54–58. IEEE (2020). https://doi.org/10.1109/calcon49167.2020.9106516

  9. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020). https://doi.org/10.1016/j.neucom.2020.05.078

    Article  Google Scholar 

  10. Hu, F., Wang, H., Wang, Q., Feng, N., Chen, J., Zhang, T.: Acrophobia quantified by EEG based on CNN incorporating granger causality. Int. J. Neural Syst. 31(03), 2050069 (2021). https://doi.org/10.1088/1741-2552/abcdbd

    Article  Google Scholar 

  11. Marko, M., Cimrová, B., Riečanskỳ, I.: Neural theta oscillations support semantic memory retrieval. Sci. Rep. 9(1), 17667 (2019). https://doi.org/10.1038/s41598-019-53813-y

    Article  Google Scholar 

  12. Meeuwissen, E.B., Takashima, A., Fernández, G., Jensen, O.: Evidence for human Fronto-central gamma activity during long-term memory encoding of word sequences. PLoS ONE 6(6), e21356 (2011). https://doi.org/10.1371/journal.pone.0021356

    Article  Google Scholar 

  13. Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., Carreiras, M.: Out-of-synchrony speech entrainment in developmental dyslexia. Hum. Brain Mapp. 37(8), 2767–2783 (2016). https://doi.org/10.1002/hbm.23206

    Article  Google Scholar 

  14. Ortiz, A., Martinez-Murcia, F.J., Luque, J.L., Giménez, A., Morales-Ortega, R., Ortega, J.: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach. Int. J. Neural Syst. 30(07), 2050029 (2020). https://doi.org/10.1142/s012906572050029x

    Article  Google Scholar 

  15. Peterson, R.L., Pennington, B.F.: Developmental dyslexia. The Lancet 379(9830), 1997–2007 (2012). https://doi.org/10.1016/s0140-6736(12)60198-6

    Article  Google Scholar 

  16. Poeppel, D., Idsardi, W.J., Van Wassenhove, V.: Speech perception at the interface of neurobiology and linguistics. Philos. Trans. Royal Soc. B. Biol. Sci. 363(1493), 1071–1086 (2008). https://doi.org/10.1093/oso/9780199561315.003.0011

    Article  Google Scholar 

  17. Pugh, K.R., et al.: Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Ment. Retard. Dev. Disabil. Res. Rev. 6(3), 207–213 (2000). https://doi.org/10.1002/1098-2779(2000)

    Article  Google Scholar 

  18. Rodríguez-Rodríguez, I., Ortiz, A., Gallego-Molina, N.J., Formoso, M., Woo, W.L.: Eeg interchannel causality to identify source/sink phase connectivity patterns in developmental dyslexia. Int. J. Neural Syst. 33(04), 2350020 (2023). https://doi.org/10.1142/s012906572350020x

    Article  Google Scholar 

  19. Romeo, R.R., Segaran, J., Leonard, J.A., Robinson, S.T., West, M.R., Mackey, A.P., Yendiki, A., Rowe, M.L., Gabrieli, J.D.: Language exposure relates to structural neural connectivity in childhood. J. Neurosci. 38(36), 7870–7877 (2018). https://doi.org/10.1523/jneurosci.0484-18.2018

    Article  Google Scholar 

  20. Schmidt, C., Piper, D., Pester, B., Mierau, A., Witte, H.: Tracking the reorganization of module structure in time-varying weighted brain functional connectivity networks. Int. J. Neural Syst. 28(04), 1750051 (2018). https://doi.org/10.1142/s0129065717500514

    Article  Google Scholar 

  21. Spironelli, C., Angrilli, A.: Developmental aspects of language lateralization in delta, theta, alpha and beta EEG bands. Biol. Psychol. 85(2), 258–267 (2010). https://doi.org/10.1016/j.biopsycho.2010.07.011

    Article  Google Scholar 

  22. Summerfield, C., Mangels, J.A.: Coherent theta-band EEG activity predicts item-context binding during encoding. Neuroimage 24(3), 692–703 (2005). https://doi.org/10.1016/j.neuroimage.2004.09.012

    Article  Google Scholar 

  23. Wang, L., Zhu, Z., Bastiaansen, M.: Integration or predictability? Further specification of the functional role of EEG gamma-band oscillations during language comprehension. Front. Psychol. 3(187), 00187 (2012). https://doi.org/10.3389/fpsyg.2012.00187

  24. Yaqub, M.A., Hong, K.S., Zafar, A., Kim, C.S.: Control of transcranial direct current stimulation duration by assessing functional connectivity of near-infrared spectroscopy signals. Int. J. Neural Syst. 32(01), 2150050 (2022). https://doi.org/10.3390/bioengineering10070810

    Article  Google Scholar 

Download references

Acknowledgments

This research is part of the PID2022-137461NB-C32, PID2022-137629OA-I00 and PID2022-137451OB-I00 projects, funded by the MICIU/AEI/10.13039/501100011033 and by ERDF/EU, as well as UMA20-FEDERJA-086 (Consejería de Economía y Conocimiento, Junta de Andalucía) and by European Regional Development Funds (ERDF). This research is part of the TIC251-G-FEDER project, funded by ERDF/EU. M.A.F. grant PRE2019-087350 funded by MICIU/AEI/10.13039/501100011033 by “ESF Investing in your future”, I.R.-R. funded by Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI), Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Rodríguez-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez-Rodríguez, I., Ortiz, A., Formoso, M.A., Gallego-Molina, N.J., Luque, J.L. (2024). Causal Mechanisms of Dyslexia via Connectogram Modeling of Phase Synchrony. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics