[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Heart Attack Detection Using Body Posture and Facial Expression of Pain

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

It is not uncommon for a person to be alone when they have a heart attack. Getting help quickly can mean the difference between life and death. The pain a person feels during a heart attack may prevent them from seeking help in time, so automated methods are needed to detect and alert to such events. This article presents a proposal based on machine vision and deep learning to identify possible heart attacks. First, a typical human posture of a possible heart attack is identified using the upper body joints from skeletal studies. As similar non-infarct postures are possible, the posture analysis is integrated with the facial expression of pain to reduce the number of false positives. The proposed method has achieved 93.33% accuracy in detecting myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bustamante, A., Belmonte, L.M., Pereira, A., González, P., Fernández-Caballero, A., Morales, R.: Vision-based human posture detection from a virtual home-care unmanned aerial vehicle. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds.) IWINAC 2022. LNCS, vol. 13259, pp. 482–491. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06527-9_48

    Chapter  Google Scholar 

  2. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  3. Castillo, J.C., et al.: Software architecture for smart emotion recognition and regulation of the ageing adult. Cogn. Comput. 8(2), 357–367 (2016)

    Article  MathSciNet  Google Scholar 

  4. Fernández-Caballero, A., et al.: Smart environment architecture for emotion detection and regulation. J. Biomed. Inf. 64, 55–73 (2016)

    Article  Google Scholar 

  5. Górriz, J., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023)

    Article  Google Scholar 

  6. Hur, T., Bang, J., Huynh-The, T., Lee, J., Kim, J.I., Lee, S.: Iss2Image: a novel signal-encoding technique for CNN-based human activity recognition. Sensors 18(11), 3910 (2018)

    Article  Google Scholar 

  7. Lie, W.N., Le, A.T., Lin, G.H.: Human fall-down event detection based on 2D skeletons and deep learning approach. In: International Workshop on Advanced Image Technology, pp. 1–4. IEEE (2018)

    Google Scholar 

  8. Lozano-Monasor, E., López, M.T., Vigo-Bustos, F., Fernández-Caballero, A.: Facial expression recognition in ageing adults: from lab to ambient assisted living. J. Ambient. Intell. Humaniz. Comput. 8(4), 567–578 (2017)

    Article  Google Scholar 

  9. López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Motion features to enhance scene segmentation in active visual attention. Pattern Recogn. Lett. 27(5), 469–478 (2006)

    Article  Google Scholar 

  10. Martínez-Rodrigo, A., García-Martínez, B., Alcaraz, R., González, P., Fernández-Caballero, A.: Multiscale entropy analysis for recognition of visually elicited negative stress from EEG recordings. Int. J. Neural Syst. 29(2), 1850038 (2019)

    Article  Google Scholar 

  11. Patel, A., Fang, J., Gillespie, C., Odom, E., Luncheon, C., Ayala, C.: Awareness of heart attack signs and symptoms and calling 9-1-1 among U.S. adults. J. Am. Coll. Cardiol. 71(7), 808–809 (2018)

    Article  Google Scholar 

  12. Rojas-Albarracín, G., Chaves, M.A., Fernández-Caballero, A., López, M.T.: Heart attack detection in colour images using convolutional neural networks. Appl. Sci. 9(23), 5065 (2019)

    Article  Google Scholar 

  13. Sánchez-Reolid, R., et al.: Artificial neural networks to assess emotional states from brain-computer interface. Electronics 7(12), 384 (2018)

    Article  Google Scholar 

  14. Sánchez-Reolid, R., Martínez-Rodrigo, A., López, M.T., Fernández-Caballero, A.: Deep support vector machines for the identification of stress condition from electrodermal activity. Int. J. Neural Syst. 30(7), 2050031 (2020)

    Article  Google Scholar 

  15. Sánchez-Reolid, R., et al.: Emotion classification from EEG with a low-cost BCI versus a high-end equipment. Int. J. Neural Syst. 32(10), 2250041 (2022)

    Article  Google Scholar 

  16. Sokolova, M.V., Serrano-Cuerda, J., Castillo, J.C., Fernández-Caballero, A.: A fuzzy model for human fall detection in infrared video. J. Intell. Fuzzy Syst. 24(2), 215–228 (2013)

    Article  Google Scholar 

  17. The World Bank: Population Ages 65 and Above (% of Total) (2017). https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS

  18. Turabieh, H., Mafarja, M., Li, X.: Iterated feature selection algorithms with layered recurrent neural network for software fault prediction. Expert Syst. Appl. 122, 27–42 (2019)

    Article  Google Scholar 

  19. Wilson, G., et al.: Robot-enabled support of daily activities in smart home environments. Cogn. Syst. Res. 54, 258–272 (2019)

    Article  Google Scholar 

  20. World Health Organization: The Top 10 Causes of Death (2018). https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

Download references

Acknowledgements

Grant PID2023-149753OB-C21 funded by Spanish MCIU/ AEI/ 10.13039/5011 00011033/ERDF, EU. Grant PID2020-115220RB-C21 funded by Spanish MCIN/ AEI/ 10.13039/ 501100011033 and by “ERDF A way to make Europe”. Grant 2022-GRIN-34436 funded by Universidad de Castilla-La Mancha and by “ERDF A way of making Europe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fernández-Caballero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rojas-Albarracín, G., Fernández-Caballero, A., Pereira, A., López, M.T. (2024). Heart Attack Detection Using Body Posture and Facial Expression of Pain. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics