Abstract
It is not uncommon for a person to be alone when they have a heart attack. Getting help quickly can mean the difference between life and death. The pain a person feels during a heart attack may prevent them from seeking help in time, so automated methods are needed to detect and alert to such events. This article presents a proposal based on machine vision and deep learning to identify possible heart attacks. First, a typical human posture of a possible heart attack is identified using the upper body joints from skeletal studies. As similar non-infarct postures are possible, the posture analysis is integrated with the facial expression of pain to reduce the number of false positives. The proposed method has achieved 93.33% accuracy in detecting myocardial infarction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bustamante, A., Belmonte, L.M., Pereira, A., González, P., Fernández-Caballero, A., Morales, R.: Vision-based human posture detection from a virtual home-care unmanned aerial vehicle. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds.) IWINAC 2022. LNCS, vol. 13259, pp. 482–491. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06527-9_48
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)
Castillo, J.C., et al.: Software architecture for smart emotion recognition and regulation of the ageing adult. Cogn. Comput. 8(2), 357–367 (2016)
Fernández-Caballero, A., et al.: Smart environment architecture for emotion detection and regulation. J. Biomed. Inf. 64, 55–73 (2016)
Górriz, J., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fusion 100, 101945 (2023)
Hur, T., Bang, J., Huynh-The, T., Lee, J., Kim, J.I., Lee, S.: Iss2Image: a novel signal-encoding technique for CNN-based human activity recognition. Sensors 18(11), 3910 (2018)
Lie, W.N., Le, A.T., Lin, G.H.: Human fall-down event detection based on 2D skeletons and deep learning approach. In: International Workshop on Advanced Image Technology, pp. 1–4. IEEE (2018)
Lozano-Monasor, E., López, M.T., Vigo-Bustos, F., Fernández-Caballero, A.: Facial expression recognition in ageing adults: from lab to ambient assisted living. J. Ambient. Intell. Humaniz. Comput. 8(4), 567–578 (2017)
López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Motion features to enhance scene segmentation in active visual attention. Pattern Recogn. Lett. 27(5), 469–478 (2006)
Martínez-Rodrigo, A., García-Martínez, B., Alcaraz, R., González, P., Fernández-Caballero, A.: Multiscale entropy analysis for recognition of visually elicited negative stress from EEG recordings. Int. J. Neural Syst. 29(2), 1850038 (2019)
Patel, A., Fang, J., Gillespie, C., Odom, E., Luncheon, C., Ayala, C.: Awareness of heart attack signs and symptoms and calling 9-1-1 among U.S. adults. J. Am. Coll. Cardiol. 71(7), 808–809 (2018)
Rojas-Albarracín, G., Chaves, M.A., Fernández-Caballero, A., López, M.T.: Heart attack detection in colour images using convolutional neural networks. Appl. Sci. 9(23), 5065 (2019)
Sánchez-Reolid, R., et al.: Artificial neural networks to assess emotional states from brain-computer interface. Electronics 7(12), 384 (2018)
Sánchez-Reolid, R., Martínez-Rodrigo, A., López, M.T., Fernández-Caballero, A.: Deep support vector machines for the identification of stress condition from electrodermal activity. Int. J. Neural Syst. 30(7), 2050031 (2020)
Sánchez-Reolid, R., et al.: Emotion classification from EEG with a low-cost BCI versus a high-end equipment. Int. J. Neural Syst. 32(10), 2250041 (2022)
Sokolova, M.V., Serrano-Cuerda, J., Castillo, J.C., Fernández-Caballero, A.: A fuzzy model for human fall detection in infrared video. J. Intell. Fuzzy Syst. 24(2), 215–228 (2013)
The World Bank: Population Ages 65 and Above (% of Total) (2017). https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS
Turabieh, H., Mafarja, M., Li, X.: Iterated feature selection algorithms with layered recurrent neural network for software fault prediction. Expert Syst. Appl. 122, 27–42 (2019)
Wilson, G., et al.: Robot-enabled support of daily activities in smart home environments. Cogn. Syst. Res. 54, 258–272 (2019)
World Health Organization: The Top 10 Causes of Death (2018). https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
Acknowledgements
Grant PID2023-149753OB-C21 funded by Spanish MCIU/ AEI/ 10.13039/5011 00011033/ERDF, EU. Grant PID2020-115220RB-C21 funded by Spanish MCIN/ AEI/ 10.13039/ 501100011033 and by “ERDF A way to make Europe”. Grant 2022-GRIN-34436 funded by Universidad de Castilla-La Mancha and by “ERDF A way of making Europe”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rojas-Albarracín, G., Fernández-Caballero, A., Pereira, A., López, M.T. (2024). Heart Attack Detection Using Body Posture and Facial Expression of Pain. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-61140-7_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61139-1
Online ISBN: 978-3-031-61140-7
eBook Packages: Computer ScienceComputer Science (R0)