[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparison of an Accelerated Garble Embedding Methodology for Privacy Preserving in Biomedical Data Analytics

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

This research work proposes a novel, encryption-based method for comparing embeddings generated by neural networks on various information types (text, images, videos, audio, etc.). This approach prioritizes real-world applications dealing with sensitive or private data, particularly in biomedical and biometric analysis, where even minor information leaks can be highly detrimental. To address this concern, the method performs all necessary calculations within a highly secure and efficient encryption layer. Notably, this work introduces practical solutions applicable to real-world biomedical data scenarios.

This work was supported in part by Spanish Ministerio de Ciencia e Innovación under Grant PID2021-124176OB-I00, in part by Universidad Rey Juan Carlos, and in part by the Spanish General Directorate of Police.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic computation with constant computational overhead. Cryptology ePrint Archive, Paper 2017/617 (2017)

    Google Scholar 

  2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 535–548. CCS ’13, Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2508859.2516738

  3. Ball, M., Carmer, B., Malkin, T., Rosulek, M., Schimanski, N.: Garbled neural networks are practical. IACR Cryptol. ePrint Arch. p. 338 (2019)

    Google Scholar 

  4. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arithmetic circuits. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 565–577. CCS ’16, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978410

  5. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_8

    Chapter  Google Scholar 

  6. Bellare, M., Hoang, V., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key blockcipher. In: 2012 IEEE Symposium on Security and Privacy, pp. 478–492. IEEE Computer Society, Los Alamitos, CA, USA (2013). https://doi.org/10.1109/SP.2013.39

  7. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 291–308. CCS ’19, Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3354255

  8. Breebaart, J., Busch, C., Grave, J., Kindt, E.: A reference architecture for biometric template protection based on pseudo identities. In: ASDFASD, pp. 25–38 (2008)

    Google Scholar 

  9. Chen, T., et al.: THE-X: privacy-preserving transformer inference with homomorphic encryption. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Findings of the Association for Computational Linguistics: ACL 2022, pp. 3510–3520. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.findings-acl.277

  10. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  11. Dankar, F.K., Madathil, N., Dankar, S.K., Boughorbel, S.: Privacy-preserving analysis of distributed biomedical data: designing efficient and secure multiparty computations using distributed statistical learning theory. JMIR Med. Inform. 7(2), e12702 (2019)

    Article  Google Scholar 

  12. Eicher, J., Bild, R., Spengler, H., Kuhn, K.A., Prasser, F.: A comprehensive tool for creating and evaluating privacy-preserving biomedical prediction models. BMC Med. Inform. Decis. Mak. 20(1), 1–14 (2020)

    Article  Google Scholar 

  13. El Emam, K., Arbuckle, L.: Anonymizing health data: case studies and methods to get you started. O’Reilly Media, Inc. (2013)

    Google Scholar 

  14. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_2

    Chapter  Google Scholar 

  15. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

    Chapter  Google Scholar 

  16. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  17. Kim, D., Lee, G., Oh, S.: Toward privacy-preserving text embedding similarity with homomorphic encryption. In: Chen, C.C., Huang, H.H., Takamura, H., Chen, H.H. (eds.) Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP), pp. 25–36. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates (Hybrid) (2022). https://doi.org/10.18653/v1/2022.finnlp-1.4

  18. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_1

    Chapter  Google Scholar 

  19. Lam, M., Mitzenmacher, M., Reddi, V.J., Wei, G.Y., Brooks, D.: Tabula: Efficiently computing nonlinear activation functions for secure neural network inference (2022)

    Google Scholar 

  20. Lee, G., Kim, M., Park, J.H., Hwang, S.W., Cheon, J.H.: Privacy-preserving text classification on BERT embeddings with homomorphic encryption. In: Carpuat, M., de Marneffe, M.C., Meza Ruiz, I.V. (eds.) Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 3169–3175. Association for Computational Linguistics, Seattle, United States (2022). https://doi.org/10.18653/v1/2022.naacl-main.231

  21. Malin, B.A., Emam, K.E., O’Keefe, C.M.: Biomedical data privacy: problems, perspectives, and recent advances. J. Am. Med. Inform. Assoc. 20(1), 2–6 (2013)

    Article  Google Scholar 

  22. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: 2008 IEEE Symposium on Security and Privacy (2008), pp. 111–125. IEEE (2008)

    Google Scholar 

  23. Nautsch, A., Isadskiy, S., Kolberg, J., Gomez-Barrero, M., Busch, C.: Homomorphic Encryption for speaker recognition: protection of biometric templates and vendor model parameters. In: Proceedings the Speaker and Language Recognition Workshop (2018), pp. 16–23 (2018). https://doi.org/10.21437/Odyssey.2018-3

  24. O’herrin, J.K., Fost, N., Kudsk, K.A.: Health insurance portability accountability act (HIPAA) regulations: effect on medical record research. Ann. Surg. 239(6), 772 (2004)

    Google Scholar 

  25. Palacios-Alonso, D., et al.: Privacidad por diseño, clave para la buena gobernanza. Derecom, pp. 215–223 (2021)

    Google Scholar 

  26. Raghuraman, S., Rindal, P., Tanguy, T.: Expand-convolute codes for pseudorandom correlation generators from LPN. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023, pp. 602–632. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-38551-3_19

    Chapter  Google Scholar 

  27. Regulation, P.: General data protection regulation. Intouch 25, 1–5 (2018)

    Google Scholar 

  28. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)

    Google Scholar 

  29. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  30. Sweeney, L.: Computational disclosure control: A primer on data privacy protection. Ph.D. thesis, Massachusetts Institute of Technology (2001)

    Google Scholar 

  31. Vladimir Kolesnikov, T.S.: Improved garbled circuit: free XOR gates and applications. In: ICALP ’08: Proceedings of the 35th International Colloquium on Automata, Languages and Programming, Part II, pp. 486–498 (2008)

    Google Scholar 

  32. Xia, W., Heatherly, R., Ding, X., Li, J., Malin, B.A.: Ru policy frontiers for health data de-identification. J. Am. Med. Inform. Assoc. 22(5), 1029–1041 (2015)

    Article  Google Scholar 

  33. Xiang, D., Cai, W., et al.: Privacy protection and secondary use of health data: strategies and methods. BioMed Res. Int. 2021, 6967166 (2021)

    Google Scholar 

  34. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for correlated OT with small communication. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 1607–1626. CCS ’20, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3372297.3417276

  35. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167 (1986). https://doi.org/10.1109/SFCS.1986.25

  36. Yu, X., Chen, X., Shi, J.: Vector based privacy-preserving document similarity with LSA. In: 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), pp. 1383–1387 (2017). https://doi.org/10.1109/ICCSN.2017.8230336

  37. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole: Reducing data transfer in garbled circuits using half gates. Cryptology ePrint Archive, Paper 2014/756 (2014)

    Google Scholar 

  38. Zhou, J., Li, J., Panaousis, E., Liang, K.: Deep binarized convolutional neural network inferences over encrypted data. In: 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), pp. 160–167 (2020). https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00035

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Palacios-Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hristov-Kalamov, N., Fernández-Ruiz, R., álvarez-Marquina, A., Núñez-Vidal, E., Domínguez-Mateos, F., Palacios-Alonso, D. (2024). Comparison of an Accelerated Garble Embedding Methodology for Privacy Preserving in Biomedical Data Analytics. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics