Abstract
This research work proposes a novel, encryption-based method for comparing embeddings generated by neural networks on various information types (text, images, videos, audio, etc.). This approach prioritizes real-world applications dealing with sensitive or private data, particularly in biomedical and biometric analysis, where even minor information leaks can be highly detrimental. To address this concern, the method performs all necessary calculations within a highly secure and efficient encryption layer. Notably, this work introduces practical solutions applicable to real-world biomedical data scenarios.
This work was supported in part by Spanish Ministerio de Ciencia e Innovación under Grant PID2021-124176OB-I00, in part by Universidad Rey Juan Carlos, and in part by the Spanish General Directorate of Police.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic computation with constant computational overhead. Cryptology ePrint Archive, Paper 2017/617 (2017)
Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 535–548. CCS ’13, Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2508859.2516738
Ball, M., Carmer, B., Malkin, T., Rosulek, M., Schimanski, N.: Garbled neural networks are practical. IACR Cryptol. ePrint Arch. p. 338 (2019)
Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arithmetic circuits. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 565–577. CCS ’16, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978410
Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_8
Bellare, M., Hoang, V., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key blockcipher. In: 2012 IEEE Symposium on Security and Privacy, pp. 478–492. IEEE Computer Society, Los Alamitos, CA, USA (2013). https://doi.org/10.1109/SP.2013.39
Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 291–308. CCS ’19, Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3354255
Breebaart, J., Busch, C., Grave, J., Kindt, E.: A reference architecture for biometric template protection based on pseudo identities. In: ASDFASD, pp. 25–38 (2008)
Chen, T., et al.: THE-X: privacy-preserving transformer inference with homomorphic encryption. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Findings of the Association for Computational Linguistics: ACL 2022, pp. 3510–3520. Association for Computational Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.findings-acl.277
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15
Dankar, F.K., Madathil, N., Dankar, S.K., Boughorbel, S.: Privacy-preserving analysis of distributed biomedical data: designing efficient and secure multiparty computations using distributed statistical learning theory. JMIR Med. Inform. 7(2), e12702 (2019)
Eicher, J., Bild, R., Spengler, H., Kuhn, K.A., Prasser, F.: A comprehensive tool for creating and evaluating privacy-preserving biomedical prediction models. BMC Med. Inform. Decis. Mak. 20(1), 1–14 (2020)
El Emam, K., Arbuckle, L.: Anonymizing health data: case studies and methods to get you started. O’Reilly Media, Inc. (2013)
Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_2
Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9
Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)
Kim, D., Lee, G., Oh, S.: Toward privacy-preserving text embedding similarity with homomorphic encryption. In: Chen, C.C., Huang, H.H., Takamura, H., Chen, H.H. (eds.) Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP), pp. 25–36. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates (Hybrid) (2022). https://doi.org/10.18653/v1/2022.finnlp-1.4
Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_1
Lam, M., Mitzenmacher, M., Reddi, V.J., Wei, G.Y., Brooks, D.: Tabula: Efficiently computing nonlinear activation functions for secure neural network inference (2022)
Lee, G., Kim, M., Park, J.H., Hwang, S.W., Cheon, J.H.: Privacy-preserving text classification on BERT embeddings with homomorphic encryption. In: Carpuat, M., de Marneffe, M.C., Meza Ruiz, I.V. (eds.) Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 3169–3175. Association for Computational Linguistics, Seattle, United States (2022). https://doi.org/10.18653/v1/2022.naacl-main.231
Malin, B.A., Emam, K.E., O’Keefe, C.M.: Biomedical data privacy: problems, perspectives, and recent advances. J. Am. Med. Inform. Assoc. 20(1), 2–6 (2013)
Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: 2008 IEEE Symposium on Security and Privacy (2008), pp. 111–125. IEEE (2008)
Nautsch, A., Isadskiy, S., Kolberg, J., Gomez-Barrero, M., Busch, C.: Homomorphic Encryption for speaker recognition: protection of biometric templates and vendor model parameters. In: Proceedings the Speaker and Language Recognition Workshop (2018), pp. 16–23 (2018). https://doi.org/10.21437/Odyssey.2018-3
O’herrin, J.K., Fost, N., Kudsk, K.A.: Health insurance portability accountability act (HIPAA) regulations: effect on medical record research. Ann. Surg. 239(6), 772 (2004)
Palacios-Alonso, D., et al.: Privacidad por diseño, clave para la buena gobernanza. Derecom, pp. 215–223 (2021)
Raghuraman, S., Rindal, P., Tanguy, T.: Expand-convolute codes for pseudorandom correlation generators from LPN. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023, pp. 602–632. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-38551-3_19
Regulation, P.: General data protection regulation. Intouch 25, 1–5 (2018)
Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)
Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)
Sweeney, L.: Computational disclosure control: A primer on data privacy protection. Ph.D. thesis, Massachusetts Institute of Technology (2001)
Vladimir Kolesnikov, T.S.: Improved garbled circuit: free XOR gates and applications. In: ICALP ’08: Proceedings of the 35th International Colloquium on Automata, Languages and Programming, Part II, pp. 486–498 (2008)
Xia, W., Heatherly, R., Ding, X., Li, J., Malin, B.A.: Ru policy frontiers for health data de-identification. J. Am. Med. Inform. Assoc. 22(5), 1029–1041 (2015)
Xiang, D., Cai, W., et al.: Privacy protection and secondary use of health data: strategies and methods. BioMed Res. Int. 2021, 6967166 (2021)
Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for correlated OT with small communication. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 1607–1626. CCS ’20, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3372297.3417276
Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167 (1986). https://doi.org/10.1109/SFCS.1986.25
Yu, X., Chen, X., Shi, J.: Vector based privacy-preserving document similarity with LSA. In: 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), pp. 1383–1387 (2017). https://doi.org/10.1109/ICCSN.2017.8230336
Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole: Reducing data transfer in garbled circuits using half gates. Cryptology ePrint Archive, Paper 2014/756 (2014)
Zhou, J., Li, J., Panaousis, E., Liang, K.: Deep binarized convolutional neural network inferences over encrypted data. In: 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), pp. 160–167 (2020). https://doi.org/10.1109/CSCloud-EdgeCom49738.2020.00035
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hristov-Kalamov, N., Fernández-Ruiz, R., álvarez-Marquina, A., Núñez-Vidal, E., Domínguez-Mateos, F., Palacios-Alonso, D. (2024). Comparison of an Accelerated Garble Embedding Methodology for Privacy Preserving in Biomedical Data Analytics. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-61140-7_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61139-1
Online ISBN: 978-3-031-61140-7
eBook Packages: Computer ScienceComputer Science (R0)