Abstract
Biometric recognition, especially facial recognition, has achieved significant success, but it faces challenges like counterfeiting biometric data. This paper proposes a Facial Presentation Attack Detection (PAD) system that incorporates contextual information to identify and discard attacks involving detectable Presentation Attack Instruments (PAIs). The aim is to streamline computational efforts and enhance the subsequent PAD system’s analysis of facial features. The PAD system yields excellent results, achieving a 99% accuracy rate. This high performance is confirmed through the application of a Explainable Artificial Intelligence (XAI) technique, Grad-CAM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baldi, P., Sadowski, P.J.: Understanding dropout. In: Advances in Neural Information Processing Systems, vol. 26 (2013)
Bolle, R., Pankanti, S., Ratha, N.: Evaluation techniques for biometrics-based authentication systems (FRR). In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. vol. 2, pp. 831–837 (2000). https://doi.org/10.1109/ICPR.2000.906204
Confalonieri, R., Coba, L., Wagner, B., Besold, T.R.: A historical perspective of explainable artificial intelligence. WIREs Data Min. Knowl. Discovery 11(1), e1391 (2021)
Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Technical Report, Univeristé de Montréal (2009)
Galbally, J., Marcel, S., Fierrez, J.: Image quality assessment for fake biometric detection: Application to iris, fingerprint, and face recognition. IEEE Trans. Image Process. 23(2), 710–724 (2013)
Gholamy, A., Kreinovich, V., Kosheleva, O.: Why 70/30 or 80/20 relation between training and testing sets: a pedagogical explanation. Int. J. Intell. Technol. Appl. Stat. 11(2), 105–111 (2018)
ISO/IEC JTC 1/SC 37: Iso/iec 30107-1:2023 information technology - biometric presentation attack detection. Technical report, International Organization for Standardization (2023). https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-1:ed-2:v1:en
ISO/IEC JTC 1/SC 37: Iso/iec 5725-1:2023 accuracy (trueness and precision) of measurement methods and results part 1: General principles and definitions. Technical report, International Organization for Standardization (2023). https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-2:v1:en
Luque, A., Carrasco, A., Martín, A., de Las Heras, A.: The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recogn. 91, 216–231 (2019)
Ras, G., Xie, N., van Gerven, M., Doran, D.: Explainable deep learning: a field guide for the uninitiated. J. Artif. Int. Res. 73, 68 (2022). https://doi.org/10.1613/jair.1.13200
Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization help optimization? In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7
Selwal, A., Gupta, S.K., Kumar, S.: A scheme for template security at feature fusion level in multimodal biometric system. Adv. Sci. Technol. Res. J. 10(31), 23–30 (2016)
Sequeira, A.F., Silva, W., Pinto, J.R., Gonçalves, T., Cardoso, J.S.: Interpretable biometrics: should we rethink how presentation attack detection is evaluated? In: 2020 8th International Workshop on Biometrics and Forensics (IWBF), pp. 1–6. IEEE (2020)
Sharma, D., Selwal, A.: FinPAD: state-of-the-art of fingerprint presentation attack detection mechanisms, taxonomy and future perspectives. Pattern Recogn. Lett. 152, 225–252 (2021)
Sharma, D., Selwal, A.: A survey on face presentation attack detection mechanisms: hitherto and future perspectives. Multimedia Syst. 29(3), 1–51 (2023). https://link.springer.com/article/10.1007/s00530-023-01070-5
Sun, M., Song, Z., Jiang, X., Pan, J., Pang, Y.: Learning pooling for convolutional neural network. Neurocomputing 224, 96–104 (2017)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. arXiv preprint arXiv:1311.2901 (2013). https://doi.org/10.48550/arXiv.1311.2901
Acknowledgements
This work was supported in part by Spanish Ministerio de Ciencia e Innovación under Grant PID2021-124176OB-I00, in part by Universidad Rey Juan Carlos, and in part by the Spanish General Directorate of Police. Additionally, the work was guided and supported by all members of the FRAV group: High-performance research group in Facial Recognition and Artificial Vision of Universidad Rey Juan Carlos, who provided the database used for the experiments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
García-Rubio, I., Gallardo-Cava, R., Ortega-delCampo, D., Guillen-Garcia, J., Palacios-Alonso, D., Conde, C. (2024). Grad-CAM Applied to the Detection of Instruments Used in Facial Presentation Attacks. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-61140-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-61139-1
Online ISBN: 978-3-031-61140-7
eBook Packages: Computer ScienceComputer Science (R0)