[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Grad-CAM Applied to the Detection of Instruments Used in Facial Presentation Attacks

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

Biometric recognition, especially facial recognition, has achieved significant success, but it faces challenges like counterfeiting biometric data. This paper proposes a Facial Presentation Attack Detection (PAD) system that incorporates contextual information to identify and discard attacks involving detectable Presentation Attack Instruments (PAIs). The aim is to streamline computational efforts and enhance the subsequent PAD system’s analysis of facial features. The PAD system yields excellent results, achieving a 99% accuracy rate. This high performance is confirmed through the application of a Explainable Artificial Intelligence (XAI) technique, Grad-CAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baldi, P., Sadowski, P.J.: Understanding dropout. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  2. Bolle, R., Pankanti, S., Ratha, N.: Evaluation techniques for biometrics-based authentication systems (FRR). In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. vol. 2, pp. 831–837 (2000). https://doi.org/10.1109/ICPR.2000.906204

  3. Confalonieri, R., Coba, L., Wagner, B., Besold, T.R.: A historical perspective of explainable artificial intelligence. WIREs Data Min. Knowl. Discovery 11(1), e1391 (2021)

    Google Scholar 

  4. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Technical Report, Univeristé de Montréal (2009)

    Google Scholar 

  5. Galbally, J., Marcel, S., Fierrez, J.: Image quality assessment for fake biometric detection: Application to iris, fingerprint, and face recognition. IEEE Trans. Image Process. 23(2), 710–724 (2013)

    Article  MathSciNet  Google Scholar 

  6. Gholamy, A., Kreinovich, V., Kosheleva, O.: Why 70/30 or 80/20 relation between training and testing sets: a pedagogical explanation. Int. J. Intell. Technol. Appl. Stat. 11(2), 105–111 (2018)

    Google Scholar 

  7. ISO/IEC JTC 1/SC 37: Iso/iec 30107-1:2023 information technology - biometric presentation attack detection. Technical report, International Organization for Standardization (2023). https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-1:ed-2:v1:en

  8. ISO/IEC JTC 1/SC 37: Iso/iec 5725-1:2023 accuracy (trueness and precision) of measurement methods and results part 1: General principles and definitions. Technical report, International Organization for Standardization (2023). https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-2:v1:en

  9. Luque, A., Carrasco, A., Martín, A., de Las Heras, A.: The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recogn. 91, 216–231 (2019)

    Article  Google Scholar 

  10. Ras, G., Xie, N., van Gerven, M., Doran, D.: Explainable deep learning: a field guide for the uninitiated. J. Artif. Int. Res. 73, 68 (2022). https://doi.org/10.1613/jair.1.13200

  11. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization help optimization? In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf

  12. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

  13. Selwal, A., Gupta, S.K., Kumar, S.: A scheme for template security at feature fusion level in multimodal biometric system. Adv. Sci. Technol. Res. J. 10(31), 23–30 (2016)

    Google Scholar 

  14. Sequeira, A.F., Silva, W., Pinto, J.R., Gonçalves, T., Cardoso, J.S.: Interpretable biometrics: should we rethink how presentation attack detection is evaluated? In: 2020 8th International Workshop on Biometrics and Forensics (IWBF), pp. 1–6. IEEE (2020)

    Google Scholar 

  15. Sharma, D., Selwal, A.: FinPAD: state-of-the-art of fingerprint presentation attack detection mechanisms, taxonomy and future perspectives. Pattern Recogn. Lett. 152, 225–252 (2021)

    Article  Google Scholar 

  16. Sharma, D., Selwal, A.: A survey on face presentation attack detection mechanisms: hitherto and future perspectives. Multimedia Syst. 29(3), 1–51 (2023). https://link.springer.com/article/10.1007/s00530-023-01070-5

  17. Sun, M., Song, Z., Jiang, X., Pan, J., Pang, Y.: Learning pooling for convolutional neural network. Neurocomputing 224, 96–104 (2017)

    Article  Google Scholar 

  18. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. arXiv preprint arXiv:1311.2901 (2013). https://doi.org/10.48550/arXiv.1311.2901

Download references

Acknowledgements

This work was supported in part by Spanish Ministerio de Ciencia e Innovación under Grant PID2021-124176OB-I00, in part by Universidad Rey Juan Carlos, and in part by the Spanish General Directorate of Police. Additionally, the work was guided and supported by all members of the FRAV group: High-performance research group in Facial Recognition and Artificial Vision of Universidad Rey Juan Carlos, who provided the database used for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Palacios-Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Rubio, I., Gallardo-Cava, R., Ortega-delCampo, D., Guillen-Garcia, J., Palacios-Alonso, D., Conde, C. (2024). Grad-CAM Applied to the Detection of Instruments Used in Facial Presentation Attacks. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics