[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

PDBIGDATA: A New Database for Parkinsonism Research Focused on Large Models

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

Medical imaging plays a pivotal role in understanding neurodegenerative diseases like Parkinson’s, aiding in early diagnosis and treatment monitoring. Despite its importance, obtaining comprehensive imaging datasets remains challenging. In response, we introduce a new database comprising brain images from Parkinson’s patients and healthy controls, addressing the scarcity of such resources in the field. The database currently houses around 3000 subjects, offering a diverse and extensive collection for research purposes. Leveraging this dataset, we conduct experiments employing classical models to delineate neuroanatomical disparities between Parkinson’s patients and controls. Our findings not only underscore the potential of this database in advancing Parkinson’s research but also highlight its significance in facilitating the translation of findings into clinical practice, ultimately enhancing patient care and outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005). https://doi.org/10.1016/j.neuroimage.2005.02.018

    Article  Google Scholar 

  2. Bidgood, W.D., Jr., Horii, S.C., Prior, F.W., Van Syckle, D.E.: Understanding and using DICOM, the data interchange standard for biomedical imaging. J. Am. Med. Inf. Assoc. 4(3), 199–212 (1997). https://doi.org/10.1136/jamia.1997.0040199

    Article  Google Scholar 

  3. Castillo-Barnes, D., et al.: Nonlinear weighting ensemble learning model to diagnose parkinson’s disease using multimodal data. Int. J. Neural Syst. 33(08), 2350041 (2023). https://doi.org/10.1142/S0129065723500417

    Article  Google Scholar 

  4. Gentner, T., Neitzel, T., Schulze, J., Gerschner, F., Theissler, A.: Data lakes in healthcare: applications and benefits from the perspective of data sources and players. Procedia Comput. Sci. 225, 1302–1311 (2023). https://doi.org/10.1016/j.procs.2023.10.118

    Article  Google Scholar 

  5. Gorriz, J.M., et al.: Statistical agnostic mapping: a framework in neuroimaging based on concentration inequalities. Inf. Fusion 66, 198–212 (2021). https://doi.org/10.1016/j.inffus.2020.09.008

    Article  Google Scholar 

  6. Gorriz, J.M., Suckling, J., Ramirez, J., Jimenez-Mesa, C., Segovia, F.: A connection between pattern classification by machine learning and statistical inference with the General Linear Model. IEEE J. Biomed. Health Inf. 26, 5332–5343 (2021). https://doi.org/10.1109/JBHI.2021.3101662

    Article  Google Scholar 

  7. Khedher, L., Ramírez, J., Górriz, J.M., Brahim, A., Segovia, F.: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 151(Part 1), 139–150 (2015). https://doi.org/10.1016/j.neucom.2014.09.072

    Article  Google Scholar 

  8. Marek, K., et al.: The Parkinson’s progression markers initiative (PPMI) - establishing a PD biomarker cohort. Ann. Clin. Transl. Neurol. 5(12), 1460–1477 (2018). https://doi.org/10.1002/acn3.644

    Article  Google Scholar 

  9. Martinez-Murcia, F.J., et al.: Assessing mild cognitive impairment progression using a spherical brain mapping of magnetic resonance imaging. J. Alzheimer’s Dis. 65(3), 713–729 (2018). https://doi.org/10.3233/JAD-170403

    Article  Google Scholar 

  10. Muratov, S.Y., Muravyov, S.B.: Framework architecture of a secure big data lake. Procedia Comput. Sci. 229, 39–46 (2023). https://doi.org/10.1016/j.procs.2023.12.005

    Article  Google Scholar 

  11. Segovia, F., et al.: Multivariate analysis of dual-point amyloid PET intended to assist the diagnosis of Alzheimer’s disease. Neurocomputing 417, 1–9 (2020). https://doi.org/10.1016/j.neucom.2020.06.081

    Article  Google Scholar 

  12. Segovia, F., et al.: Multivariate analysis of 18F-DMFP PET data to assist the diagnosis of parkinsonism. Front. Neuroinf. 11, 1–9 (2017). https://doi.org/10.3389/fninf.2017.00023

    Article  Google Scholar 

  13. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002). https://doi.org/10.1006/nimg.2001.0978

    Article  Google Scholar 

  14. Wang, Y., Kung, L., Byrd, T.A.: Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Chang. 126, 3–13 (2018). https://doi.org/10.1016/j.techfore.2015.12.019

    Article  Google Scholar 

Download references

Acknowledgment

This research is part of the PID2022-137629OA-I00, PID2022-137461NB-C32 and PID2022-137451OB-I00 projects, funded by the MICIU/AEI /10.13039/501100011033 and by “ERDF/EU”, and the C-ING-183-UGR23 project, cofunded by the Consejería de Universidad, Investigación e Innovación and by European Union, funded by Programa FEDER Andalucía 2021–2027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Segovia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López, R. et al. (2024). PDBIGDATA: A New Database for Parkinsonism Research Focused on Large Models. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics