[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Extracting Heart Rate Variability from NIRS Signals for an Explainable Detection of Learning Disorders

  • Conference paper
  • First Online:
Artificial Intelligence for Neuroscience and Emotional Systems (IWINAC 2024)

Abstract

Artificial Intelligence (AI) has improved our ability to process large amounts of data. These tools are particularly interesting in medical contexts because they evaluate the variables from patients’ screening evaluation and disentangle the information that they contain. In this study, we propose a novel method for detecting developmental dyslexia by extracting heart signals from NIRS. Features in terms of different domains based on heart rate variability (HRV) are computed from the extracted signal, and dimensionality of the resulting data is reduced through Principal Component Analysis (PCA). To evaluate the discriminability of the information patterns associated with normal controls and dyslexic patients, the resulting components are entered into a linear classifier to evaluate the discriminability of the information patterns associated with normal controls and dyslexic patients, leading to an area under the ROC curve of 0.79. The explanatory nature of our framework, based on Shapley Additive Explanations (SHAP), yields a deeper understanding of the evaluated phenomenon, revealing the presence of behavioral variables highly correlated with the model’s features. These findings demonstrate that heart information can be extracted from a different equipment than electrocardiogram tools, and that cardiac signal variables can be used to detect dyslexia in an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arco, J.E., Gallego-Molina, N.J., Ortiz, A., Arroyo-Alvis, K., López-Pérez, P.J.: Identifying HRV patterns in ECG signals as early markers of dementia. Expert Syst. Appl. 243, 122934 (2024)

    Article  Google Scholar 

  2. Arco, J.E., Ortiz, A., Castillo-Barnes, D., Górriz, J.M., Ramírez, J.: Quantifying inter-hemispheric differences in Parkinson’s disease using siamese networks. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds.) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications, pp. 156–165 (2022)

    Google Scholar 

  3. Arco, J.E., Ortiz, A., Ramírez, J., Zhang, Y.D., Górriz, J.M.: Tiled sparse coding in eigenspaces for image classification. Int. J. Neural Syst. 32(03), 2250007 (2022)

    Article  Google Scholar 

  4. Arco, J.E., Ortiz, A., Castillo-Barnes, D., Górriz, J.M., Ramírez, J.: Ensembling shallow Siamese architectures to assess functional asymmetry in Alzheimer’s disease progression. Appl. Soft Comput. 134, 109991 (2023)

    Article  Google Scholar 

  5. Arco, J.E., Ortiz, A., Gallego-Molina, N.J., Górriz, J.M., Ramírez, J.: Enhancing multimodal patterns in neuroimaging by Siamese neural networks with self-attention mechanism. Int. J. Neural Syst. 33(4), 2350019 (2023)

    Article  Google Scholar 

  6. Arco, J.E., et al.: Probabilistic combination of non-linear eigenprojections for ensemble classification. IEEE Trans. Emerg. Top. Comput. Intell. 7, 1–11 (2022)

    Google Scholar 

  7. Arco, J.E., Ramírez, J., Puntonet, C.G., Górriz, J.M., Ruz, M.: Improving short-term prediction from MCI to AD by applying Searchlight analysis. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 10–13 (2016)

    Google Scholar 

  8. De Vos, A., Vanvooren, S., Vanderauwera, J., Ghesqui ère, P., Wouters, J.: A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia. Cortex 93, 206–219 (2017)

    Google Scholar 

  9. Dutt, S.: Comparison of classification methods used in machine learning for dysgraphia identification. Turk. J. Comput. Math. Educ. (Turcomat) 12, 1886–1891 (2021)

    Article  Google Scholar 

  10. Fishburn, F.A., Ludlum, R.S., Vaidya, C.J., Medvedev, A.V.: Temporal derivative distribution repair (TDDR): a motion correction method for FNIRS. Neuroimage 184, 171–179 (2019)

    Article  Google Scholar 

  11. Fleming, S., et al.: Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet 377(9770), 1011–1018 (2011)

    Article  Google Scholar 

  12. Frattola, A., et al.: Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus. Diabetologia 40, 1470–1475 (1997)

    Article  Google Scholar 

  13. Gallego-Molina, N.J., Ortiz, A., Martínez-Murcia, F.J., Rodríguez-Rodríguez, I., Luque, J.L.: Assessing functional brain network dynamics in dyslexia from FNIRS data. Int. J. Neural Syst. 33(04), 2350017 (2023)

    Article  Google Scholar 

  14. Golland, P., Fischl, B.: Permutation tests for classification: towards statistical significance in image-based studies. In: Taylor, C., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 330–341. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45087-0_28

    Chapter  Google Scholar 

  15. Graham, G., Csicsery, N., Stasiowski, E., Thouvenin, G., Mather, W.: Genome-scale transcriptional dynamics and environmental biosensing. Proc. Natl. Acad. Sci. 117, 3301–3306 (2020)

    Article  Google Scholar 

  16. Górriz, J., et al.: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends. Inf. Fus. 100, 101945 (2023)

    Article  Google Scholar 

  17. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)

    Article  Google Scholar 

  18. Jiménez-Mesa, C., Arco, J.E., Valentí-Soler, M., et al.: Using explainable artificial intelligence in the clock drawing test to reveal the cognitive impairment pattern. Int. J. Neural Syst. 33(04), 2350015 (2023)

    Article  Google Scholar 

  19. Lotufo, P., Valiengo, L., Benseñor, I., Brunoni, A.: A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs. Epilepsia 53, 272–282 (2012)

    Article  Google Scholar 

  20. Ortiz, A., Martinez-Murcia, F.J., Luque, J.L., Giménez, A., Morales-Ortega, R., Ortega, J.: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach. Int. J. Neural Syst. 30(07), 2050029 (2020)

    Article  Google Scholar 

  21. Pollonini, L., Olds, C., Abaya, H., Bortfeld, H., Beauchamp, M.S., Oghalai, J.S.: Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy. Hear. Res. 309, 84–93 (2014)

    Article  Google Scholar 

  22. Sieciński, S., Kostka, P., Tkacz, E.: Heart rate variability analysis on electrocardiograms, seismocardiograms and gyrocardiograms on healthy volunteers. Sensors 20, 4522 (2020)

    Article  Google Scholar 

  23. Wu, X.: Optimal quantization by matrix searching. J. Algorithms 12(4), 663–673 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research was supported by projects PID2022-137451OB-I00, PID2022-137629OA-I00, and PID2022-137461NB-C32 funded by MICIU/AEI/10.13039/501 100011033 and by “ERDF/EU”, and NextGenerationEU fund through “Margarita Salas” grant to JEA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan E. Arco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arco, J.E., Gallego-Molina, N.J., López-Pérez, P.J., Ramírez, J., Górriz, J.M., Ortiz, A. (2024). Extracting Heart Rate Variability from NIRS Signals for an Explainable Detection of Learning Disorders. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer Science, vol 14674. Springer, Cham. https://doi.org/10.1007/978-3-031-61140-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61140-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61139-1

  • Online ISBN: 978-3-031-61140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics