[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Formalization of Asymptotic Convergence for Stationary Iterative Methods

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14627))

Included in the following conference series:

  • 399 Accesses

Abstract

Solutions to differential equations, which are used to model physical systems, are computed numerically by solving a set of discretized equations. This set of discretized equations is reduced to a large linear system, whose solution is typically found using an iterative solver. We start with an initial guess, \(x_0\), and iterate the algorithm to obtain a sequence of solution vectors, \(x_k\), which are approximations to the exact solution of the linear system, x. The iterative algorithm is said to converge to x, in the field of reals, if and only if \(x_k\) converges to x in the limit of \(k \rightarrow \infty \).

In this paper, we formally prove the asymptotic convergence of a particular class of iterative methods called the stationary iterative methods, in the Coq theorem prover. We formalize the necessary and sufficient conditions required for the iterative convergence, and extend this result to two classical iterative methods: the Gauss–Seidel method and the Jacobi method. For the Gauss–Seidel method, we also formalize a set of easily testable conditions for iterative convergence, called the Reich theorem, for a particular matrix structure, and apply this on a model problem of the one-dimensional heat equation. We also apply the main theorem of iterative convergence to prove convergence of the Jacobi method on the model problem.

M. Tekriwal—Currently affiliated with the Lawrence Livermore National Laboratory, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our Coq formalization is available at https://github.com/mohittkr/iterative_convergence.git.

  2. 2.

    The theory about complex modulus and norms has been added in most recent developments of MathComp after our discussion with the developers. We were pointed to the development of matrix norms in the CoqQ project (https://github.com/coq-quantum/CoqQ/blob/main/src/mxnorm.v), which was done concurrently with our development.

References

  1. Bagnara, R.: A unified proof for the convergence of Jacobi and Gauss-Seidel methods. SIAM Rev. 37(1), 93–97 (1995)

    Article  MathSciNet  Google Scholar 

  2. Boldo, S., Clément, F., Filliâtre, J.-C., Mayero, M., Melquiond, G., Weis, P.: Formal proof of a wave equation resolution scheme: the method error. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 147–162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_12

    Chapter  Google Scholar 

  3. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave equation numerical resolution: a comprehensive mechanized proof of a C program. J. Autom. Reason. 50(4), 423–456 (2013)

    Article  MathSciNet  Google Scholar 

  4. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Trusting computations: a mechanized proof from partial differential equations to actual program. Comput. Math. Appl. 68(3), 325–352 (2014)

    Article  MathSciNet  Google Scholar 

  5. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cano, G., Dénès, M.: Matrices à blocs et en forme canonique. In: JFLA – Journées francophones des langages applicatifs (2013). https://hal.inria.fr/hal-00779376

  7. Cohen, C.: Construction of real algebraic numbers in Coq. In: Interactive Theorem Proving (2012). https://hal.inria.fr/hal-00671809

  8. Deniz, E., Rashid, A., Hasan, O., Tahar, S.: On the formalization of the heat conduction problem in HOL. In: Buzzard, K., Kutsia, T. (eds.) CICM 2022. LNCS, vol. 13467, pp. 21–37. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16681-5_2

    Chapter  Google Scholar 

  9. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_23

    Chapter  Google Scholar 

  10. Hindmarsh, A.C.: Odepack, a systematized collection of ode solvers. Sci. Comput. 55–64 (1983)

    Google Scholar 

  11. Hindmarsh, A.C., et al.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. (TOMS) 31(3), 363–396 (2005)

    Article  MathSciNet  Google Scholar 

  12. Immler, F.: Formally verified computation of enclosures of solutions of ordinary differential equations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 113–127. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6_9

    Chapter  Google Scholar 

  13. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isabelle/HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 377–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-8_26

    Chapter  Google Scholar 

  14. Immler, F., Traut, C.: The flow of ODEs. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 184–199. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_12

    Chapter  Google Scholar 

  15. Immler, F., Traut, C.: The flow of ODEs: formalization of variational equation and Poincaré map. J. Autom. Reason. 62(2), 215–236 (2019)

    Article  Google Scholar 

  16. Lancaster, P., Tismenetsky, M.: The Theory of Matrices: With Applications. Elsevier (1985)

    Google Scholar 

  17. Mahboubi, A., Cohen, C.: Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination. Logical Methods Comput. Sci. 8 (2012)

    Google Scholar 

  18. Pasca, I.: Formal verification for numerical methods. Ph.D. thesis, Université Nice Sophia Antipolis (2010)

    Google Scholar 

  19. Prussing, J.E.: The principal minor test for semidefinite matrices. J. Guid. Control. Dyn. 9(1), 121–122 (1986)

    Article  Google Scholar 

  20. Reich, E.: On the convergence of the classical iterative method of solving linear simultaneous equations. Ann. Math. Stat. 20(3), 448–451 (1949)

    Article  MathSciNet  Google Scholar 

  21. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2003)

    Google Scholar 

  22. Tekriwal, M., Appel, A.W., Kellison, A.E., Bindel, D., Jeannin, J.B.: Verified correctness, accuracy, and convergence of a stationary iterative linear solver: Jacobi method. In: Dubois, C., Kerber, M. (eds.) CICM 2023. LNCS, vol. 14101, pp. 206–221. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42753-4_14

    Chapter  Google Scholar 

  23. Tekriwal, M., Duraisamy, K., Jeannin, J.-B.: A formal proof of the lax equivalence theorem for finite difference schemes. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 322–339. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76384-8_20

    Chapter  Google Scholar 

  24. Tekriwal, M., Miller, J., Jeannin, J.B.: Formalization of asymptotic convergence for stationary iterative methods (extended version) (2022). https://arxiv.org/abs/2202.05587

  25. Thiemann, R.: A Perron-Frobenius theorem for deciding matrix growth. J. Logical Algebraic Methods Program. 123, 100699 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Tekriwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tekriwal, M., Miller, J., Jeannin, JB. (2024). Formalization of Asymptotic Convergence for Stationary Iterative Methods. In: Benz, N., Gopinath, D., Shi, N. (eds) NASA Formal Methods. NFM 2024. Lecture Notes in Computer Science, vol 14627. Springer, Cham. https://doi.org/10.1007/978-3-031-60698-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60698-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60697-7

  • Online ISBN: 978-3-031-60698-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics