Abstract
Generalized Entity Matching (GEM) is a variant of entity matching that identifies whether entity descriptions from diverse data sources with heterogeneous data formats refer to the same real-world entity. State-of-the-art single-task fine-tuning approaches have shown limitations in handling scenarios with entity distribution shifts, particularly in low-resource settings, and can also require significant amounts of computationally expensive fine-tuning when applied to the GEM problem. This paper addresses these challenges by deploying task-conditioned adapters for low-resource GEM. We present MultiMatch, which explores the benefits of sharing knowledge across related tasks while improving the efficiency and accuracy of models used for GEM. Furthermore, we propose a loss composition strategy that leverages the heteroscedastic uncertainty of individual tasks to adjust the loss terms for each task before computing the overall loss. Empirically, we observe regulatory effects on the model’s variance. Lastly, we analyze the carbon impact of fine-tuning different systems. Results are promising: our approach generalizes over eight GEM benchmarking tasks while reducing \(CO_2\) emissions by 85.0%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The sequence length is set 512 tokens for all models.
References
Anthony, L.F.W., Kanding, B., Selvan, R.: Carbontracker: Tracking and predicting the carbon footprint of training deep learning models. arXiv (2020)
Balsebre, P., Yao, D., Cong, G., Hai, Z.: Geospatial entity resolution. In: Proceedings of the ACM Web Conference (2022). https://doi.org/10.1145/3485447.3512026
Cipolla, R., Gal, Y., Kendall, A.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. pp. 7482–7491 (2018). https://doi.org/10.1109/CVPR.2018.00781
Ebraheem, M., Thirumuruganathan, S., Joty, S., Ouzzani, M., Tang, N.: Distributed representations of tuples for entity resolution. Proc. VLDB Endow. (2018). https://doi.org/10.14778/3236187.3236198
Guo, B., Yu, J., Yang, D., Leng, H., Liao, B.: Energy-efficient database systems: a systematic survey. ACM Comput. Surv. 55(6) (2022). https://doi.org/10.1145/3538225
Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. ArXiv abs/1609.09106 (2016). https://api.semanticscholar.org/CorpusID:208981547
Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. ArXiv abs/1902.00751 (2019). https://api.semanticscholar.org/CorpusID:59599816
Ivison, H., Peters, M.: Hyperdecoders: instance-specific decoders for multi-task NLP, pp. 1715–1730. Association for Computational Linguistics (2022). https://api.semanticscholar.org/CorpusID:247476141
Karimi Mahabadi, R., Ruder, S., Dehghani, M., Henderson, J.: Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks, pp. 565–576. Association for Computational Linguistics (2021). https://api.semanticscholar.org/CorpusID:235309789
Konda, P., et al.: Magellan: toward building entity matching management systems. Proc. VLDB Endow. 9(12), 1197–1208 (2016)
Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning, pp. 3045–3059. ACL (2021). https://doi.org/10.18653/v1/2021.emnlp-main.243
Li, Y., Li, J., Suhara, Y., Doan, A., Tan, W.C.: Deep entity matching with pre-trained language models. Proc. VLDB Endow. 14(1), 50–60 (2020). https://doi.org/10.14778/3421424.3421431
Mudgal, S., et al.: Deep learning for entity matching: a design space exploration, pp. 19–34. In: SIGMOD 2018, Association for Computing Machinery (2018)
Mugeni, J.B., Amagasa, T.: A graph-based blocking approach for entity matching using contrastively learned embeddings. SIGAPP Appl. Comput. Rev. 22(4), 37–46 (2023). https://doi.org/10.1145/3584014.3584017
Mugeni, J.B., Lynden, S., Amagasa, T., Matono, A.: Adapterem: pre-trained language model adaptation for generalized entity matching using adapter-tuning, pp. 140–147. IDEAS 2023, Association for Computing Machinery (2023). https://doi.org/10.1145/3589462.3589498
Peeters, R., Bizer, C.: Dual-objective fine-tuning of BERT for entity matching. Proc. VLDB Endow. 14(10), 1913–1921 (2021). https://doi.org/10.14778/3467861.3467878
Peeters, R., Bizer, C.: Supervised contrastive learning for product matching. In: Companion Proceedings of the Web Conference 2022. ACM (2022). https://doi.org/10.1145/3487553.3524254
Peeters, R., Bizer, C.: Entity matching using large language models. arXiv (2024)
Peeters, R., Der, R.C., Bizer, C.: WDC products: a multi-dimensional entity matching benchmark. arXiv (2023)
Pfeiffer, J., et al.: AdapterHub: a framework for adapting transformers, pp. 46–54. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-demos.7
Pilault, J., hattami, A.E., Pal, C.: Conditionally adaptive multi-task learning: Improving transfer learning in NLP using fewer parameters & less data. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=de11dbHzAMF
Primpeli, A., Peeters, R., Bizer, C.: The WDC training dataset and gold standard for large-scale product matching, pp. 381–386. Association for Computing Machinery (2019). https://doi.org/0.1145/3308560.3316609
Tu, J., et al.: Domain adaptation for deep entity resolution, p. 443–457. In: SIGMOD 2022, Association for Computing Machinery (2022). https://doi.org/10.1145/3514221.3517870
Üstün, A., Bisazza, A., Bouma, G., van Noord, G., Ruder, S.: Hyper-X: a unified hypernetwork for multi-task multilingual transfer. In: Goldberg, Y., Kozareva, Z., Zhang, Y. (eds.) Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 7934–7949. Association for Computational Linguistics, Abu Dhabi, United Arab Emirates (2022). https://doi.org/10.18653/v1/2022.emnlp-main.541
Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6000–6010 (2017). http://arxiv.org/abs/1706.03762
Verdecchia, R., Sallou, J., Cruz, L.: A systematic review of green AI. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 13(4), e1507 (2023)
Wang, J., Li, Y., Hirota, W.: Machamp: a generalized entity matching benchmark, pp. 4633–4642. In: CIKM 2021, Association for Computing Machinery (2021). https://doi.org/10.1145/3459637.3482008
Wang, P., et al.: PromptEM: prompt-tuning for low-resource generalized entity matching. Proc. VLDB Endow. 16(2), 369–378 (2022). https://doi.org/10.14778/3565816.3565836
Wang, T., et al.: Bridging the gap between reality and ideality of entity matching: a revisiting and benchmark re-construction (2022 arxiv-2205.05889
Zhuang, L., Wayne, L., Ya, S., Jun, Z.: A robustly optimized BERT pre-training approach with post-training. In: Li, S., (eds.) et al Proceedings of the 20th Chinese National Conference on Computational Linguistics. pp. 1218–1227. Chinese Information Processing Society of China, Huhhot, China (2021). https://doi.org/10.1007/978-3-030-84186-7_31
Acknowledgement
This paper is based on results obtained from “Research and Development Project of the Enhanced Infrastructures for Post-5G Information and Communication Systems” (JPNP20017), commissioned by the New Energy and Industrial Technology Development Organization (NEDO) - JPNP20006, JST CREST Grant Number JPMJCR22M2, and JSPS KAKENHI Grant Number JP23K24949.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mugeni, J.B., Lynden, S., Amagasa, T., Matono, A. (2024). MultiMatch: Low-Resource Generalized Entity Matching Using Task-Conditioned Hyperadapters in Multitask Learning. In: Wrembel, R., Chiusano, S., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2024. Lecture Notes in Computer Science, vol 14912. Springer, Cham. https://doi.org/10.1007/978-3-031-68323-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-68323-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68322-0
Online ISBN: 978-3-031-68323-7
eBook Packages: Computer ScienceComputer Science (R0)