[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Matrix Sparsification to Solve Tropical Linear Vector Equations

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14787))

  • 100 Accesses

Abstract

A linear vector equation in two unknown vectors is examined in the framework of tropical algebra dealing with the theory and applications of semirings and semifields with idempotent addition. We consider a two-sided equation where each side is a tropical product of a given matrix by one of the unknown vectors. We use a matrix sparsification technique to reduce the equation to a set of vector inequalities that involve row-monomial matrices obtained from the given matrices. An existence condition of solutions for the inequalities is established, and a direct representation of the solutions is derived in a compact vector form. To illustrate the proposed approach and to compare the obtained result with that of an existing solution procedure, we apply our solution technique to handle two-sided equations known in the literature. Finally, a computational scheme based on the approach to derive all solutions of the two-sided equation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akian, M., Gaubert, S., Guterman, A.: Tropical polyhedra are equivalent to mean payoff games. Int. J. Algebra Comput. 22(1), 1250001–1–1250001–43 (2012). https://doi.org/10.1142/S0218196711006674

  2. Allamigeon, X., Gaubert, S., Goubault, E.: Computing the vertices of tropical polyhedra using directed hypergraphs. Discrete Comput. Geom. 49(2), 247–279 (2013). https://doi.org/10.1007/s00454-012-9469-6

    Article  MathSciNet  Google Scholar 

  3. Butkovič, P.: On properties of solution sets of extremal linear programs. In: Burkard, R.E., Cuninghame-Green, R.A., Zimmermann, U. (eds.) Algebraic and Combinatorial Methods in Operations Research, North-Holland Mathematics Studies, vol. 95, pp. 41–54. North-Holland (1984). https://doi.org/10.1016/S0304-0208(08)72952-9

  4. Butkovič, P.: On certain properties of the systems of linear extremal equations. Ekonom.-Mat. Obzor 14(1), 72–78 (1978)

    Google Scholar 

  5. Butkovič, P.: Solution of systems of linear extremal equations. Ekonom.-Mat. Obzor 17(4), 402–416 (1981)

    Google Scholar 

  6. Butkovič, P.: Max-linear Systems. Springer Monographs in Mathematics, Springer, London (2010). https://doi.org/10.1007/978-1-84996-299-5

  7. Butkovič, P., Hegedüs, G.: An elimination method for finding all solutions of the system of linear equations over an extremal algebra. Ekonom.-Mat. Obzor 20(2), 203–215 (1984)

    Google Scholar 

  8. Butkovič, P., Zimmermann, K.: A strongly polynomial algorithm for solving two-sided linear systems in max-algebra. Discrete Appl. Math. 154(3), 437–446 (2006). https://doi.org/10.1016/j.dam.2005.09.008

    Article  MathSciNet  Google Scholar 

  9. Cuninghame-Green, R.A., Butkovic, P.: The equation \({A}\otimes x={B}\otimes y\) over (max,+). Theoret. Comput. Sci. 293(1), 3–12 (2003). https://doi.org/10.1016/S0304-3975(02)00228-1

    Article  MathSciNet  Google Scholar 

  10. Cuninghame-Green, R.A., Zimmermann, K.: Equation with residuated functions. Comment. Math. Univ. Carolin. 42(4), 729–740 (2001)

    MathSciNet  Google Scholar 

  11. Develin, M., Sturmfels, B.: Tropical convexity. Doc. Math. 9, 1–27 (2004)

    Article  MathSciNet  Google Scholar 

  12. Gaubert, S., Katz, R.D.: The tropical analogue of polar cones. Linear Algebra Appl. 431(5), 608–625 (2009). https://doi.org/10.1016/j.laa.2009.03.012

    Article  MathSciNet  Google Scholar 

  13. Gaubert, S., Katz, R.D., Sergeev, S.: Tropical linear-fractional programming and parametric mean payoff games. J. Symbolic Comput. 47(12), 1447–1478 (2012). https://doi.org/10.1016/j.jsc.2011.12.049

    Article  MathSciNet  Google Scholar 

  14. Golan, J.S.: Semirings and Affine Equations Over Them, Mathematics and Its Applications, vol. 556. Kluwer Acad. Publ., Dordrecht (2003). https://doi.org/10.1007/978-94-017-0383-3

  15. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings, Operations Research/ Computer Science Interfaces, vol. 41. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75450-5

  16. Heidergott, B., Olsder, G.J., van der Woude, J.: Max Plus at Work. Princeton series in applied mathematics. Princeton Univ. Press, Princeton (2006)

    Google Scholar 

  17. Jones, D.: On two-sided max-linear equations. Discrete Appl. Math. 254(3), 146–160 (2019). https://doi.org/10.1016/j.dam.2018.06.011

    Article  MathSciNet  Google Scholar 

  18. Krivulin, N.K.: On the solution of a two-sided vector equation in tropical algebra. Vestnik St. Petersburg Univ. Math. 56(2), 172–181 (2023). https://doi.org/10.1134/S1063454123020103

    Article  MathSciNet  Google Scholar 

  19. Krivulin, N.K., Sorokin, V.N.: Solution of a multidimensional tropical optimization problem using matrix sparsification. Vestnik St. Petersburg Univ. Math. 51(1), 66–76 (2018). https://doi.org/10.3103/S1063454118010065

    Article  MathSciNet  Google Scholar 

  20. Krivulin, N.: Extremal properties of tropical eigenvalues and solutions to tropical optimization problems. Linear Algebra Appl. 468, 211–232 (2015). https://doi.org/10.1016/j.laa.2014.06.044

    Article  MathSciNet  Google Scholar 

  21. Krivulin, N.: A multidimensional tropical optimization problem with a non-linear objective function and linear constraints. Optimization 64(5), 1107–1129 (2015). https://doi.org/10.1080/02331934.2013.840624

    Article  MathSciNet  Google Scholar 

  22. Krivulin, N.: Solving a tropical optimization problem via matrix sparsification. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAMICS 2015. LNCS, vol. 9348, pp. 326–343. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24704-5_20

    Chapter  Google Scholar 

  23. Krivulin, N.: Algebraic solution of tropical optimization problems via matrix sparsification with application to scheduling. J. Log. Algebr. Methods Program. 89, 150–170 (2017). https://doi.org/10.1016/j.jlamp.2017.03.004

    Article  MathSciNet  Google Scholar 

  24. Krivulin, N.: Complete solution of an optimization problem in tropical semifield. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 226–241. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57418-9_14

    Chapter  Google Scholar 

  25. Krivulin, N.: Complete algebraic solution of multidimensional optimization problems in tropical semifield. J. Log. Algebr. Methods Program. 99, 26–40 (2018). https://doi.org/10.1016/j.jlamp.2018.05.002

    Article  MathSciNet  Google Scholar 

  26. Krivulin, N.: Complete solution of tropical vector inequalities using matrix sparsification. Appl. Math. 65(6), 755–775 (2020). https://doi.org/10.21136/AM.2020.0376-19

  27. Lorenzo, E., de la Puente, M.J.: An algorithm to describe the solution set of any tropical linear system \({A}\odot x={B}\odot x\). Linear Algebra Appl. 435(4), 884–901 (2011). https://doi.org/10.1016/j.laa.2011.02.014

    Article  MathSciNet  Google Scholar 

  28. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161. AMS, Providence, RI (2015). https://doi.org/10.1090/gsm/161

  29. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9781139195218

  30. Truffet, L.: A decomposition formula of idempotent polyhedral cones based on idempotent superharmonic spaces. Beitr. Algebra Geom. 51(2), 313–336 (2010)

    MathSciNet  Google Scholar 

  31. Walkup, E.A., Borriello, G., Taylor, J.M., Atiyah, M.: A general linear max-plus solution technique. In: Gunawardena, J. (ed.) Idempotency, p. 406-415. Publications of the Newton Institute, Cambridge Univ. Press (1998). https://doi.org/10.1017/CBO9780511662508.024

  32. Zimmermann, K.: A general separation theorem in extremal algebras. Ekonom.-Mat. Obzor 13(2), 179-201 (1977)

    Google Scholar 

Download references

Acknowledgments

The author is very grateful to three anonymous reviewers for their valuable comments and suggestions, which have been incorporated in the revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Krivulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krivulin, N. (2024). Using Matrix Sparsification to Solve Tropical Linear Vector Equations. In: Fahrenberg, U., Fussner, W., Glück, R. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2024. Lecture Notes in Computer Science, vol 14787. Springer, Cham. https://doi.org/10.1007/978-3-031-68279-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68279-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68278-0

  • Online ISBN: 978-3-031-68279-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics