[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evaluating Third-Party Involvement in Android Apps: Norms and Anomalies in Usage Patterns

  • Conference paper
  • First Online:
Mobile Web and Intelligent Information Systems (MobiWIS 2024)

Abstract

This paper tackles the pressing challenges in the digital realm, with a specific focus on privacy and security concerns in Android apps, especially regarding third-party involvement and data usage disclosures. A key issue addressed is the complexity and inaccessibility of privacy policies, which often remain obscure to users due to their technical legal language. To address these challenges, we employ cutting-edge artificial intelligence techniques, notably Generative AI (GenAI) and natural language processing (NLP), to decipher and interpret the privacy policies of Android apps with a focus on third-party data practices. A central feature of our study is the introduction of an innovative classification system that segregates app behaviors into ‘Transparent’ and ‘Opaque’ categories. This distinction is rooted in the clarity and explicitness of third-party data practice disclosures within app privacy policies. ‘Transparent’ apps are those that clearly articulate their interactions with third-party entities and the purposes for data usage, aligning with standard practices and enhancing user trust. Conversely, ‘Opaque’ apps lack clear disclosures, leaving users uninformed about potential data sharing and usage, thereby raising privacy and security concerns. Our research contributes by utilizing the capabilities of ChatGPT’s API for an in-depth analysis of privacy policies, with a particular emphasis on third-party mentions and data usage purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the practices, we collected 1,351 data types (e.g., Name, Email, Transaction, etc.) from the privacy policy of 273 randomly selected Android apps. We cluster them into 17 category data types - e.g., Personal Info; Technical Data; Location Data.

References

  1. Amaral, O., et al.: AI-enabled automation for completeness checking of privacy policies. IEEE Trans. Softw. Eng. 48(11), 4647–4674 (2021)

    Article  Google Scholar 

  2. Hatamian, M., et al.: Revealing the unrevealed: mining smartphone users privacy perception on app markets. Comput. Secur. 83, 332–353 (2019)

    Article  Google Scholar 

  3. Khiem, H.G., et al.: Applying blockchain technology for privacy preservation in Android platforms. In: Zhang, Y., Zhang, L.J. (eds.) ICWS 2023. LNCS, vol. 14209, pp. 47–61. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44836-2_4

    Chapter  Google Scholar 

  4. Liu, S., et al.: APPCorp: a corpus for Android privacy policy document structure analysis. Front. Comput. Sci. 17(3), 173320 (2023)

    Article  Google Scholar 

  5. Sen, S., Can, B.: Android security using NLP techniques: a review. arXiv preprint arXiv:2107.03072 (2021)

  6. Senanayake, J., Kalutarage, H., Al-Kadri, M.O., Petrovski, A., Piras, L.: Android code vulnerabilities early detection using AI-powered ACVED plugin. In: Atluri, V., Ferrara, A.L. (eds.) DBSec 2023. LNCS, vol. 13942, pp. 339–357. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37586-6_20

    Chapter  Google Scholar 

  7. Slavin, R., et al.: Toward a framework for detecting privacy policy violations in Android application code. In: Proceedings of the 38th International Conference on Software Engineering, pp. 25–36 (2016)

    Google Scholar 

  8. Son, H.X., Carminati, B., Ferrari, E.: PriApp-install: learning user privacy preferences on mobile apps’ installation. In: Su, C., Gritzalis, D., Piuri, V. (eds.) ISPEC 2022. LNCS, vol. 13620, pp. 306–323. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21280-2_17

    Chapter  Google Scholar 

  9. Son, H.X., Carminati, B., Ferrari, E.: A risk estimation mechanism for Android apps based on hybrid analysis. Data Sci. Eng. 7(3), 242–252 (2022)

    Article  Google Scholar 

  10. Son, H.X., et al.: In2P-Med: toward the individual privacy preferences identity in the medical web apps. In: Garrigós, I., Murillo Rodríguez, J.M., Wimmer, M. (eds.) ICWE 2023. LNCS, vol. 13893, pp. 126–140. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34444-2_10

    Chapter  Google Scholar 

  11. Story, P., et al.: Natural language processing for mobile app privacy compliance. In: AAAI Spring Symposium on Privacy-Enhancing Artificial Intelligence and Language Technologies, vol. 2, p. 4 (2019)

    Google Scholar 

  12. Tello, A.B., et al.: Quantitative evaluation of android application privacy security based on privacy policy and behaviour

    Google Scholar 

  13. Wang, X., et al.: Guileak: tracing privacy policy claims on user input data for Android applications. In: Proceedings of the 40th International Conference on Software Engineering, pp. 37–47 (2018)

    Google Scholar 

  14. Yao, Y., et al.: Privacy protocol analysis based on android application. In: 2021 8th International Conference on Dependable Systems and Their Applications (DSA), pp. 631–638. IEEE (2021)

    Google Scholar 

  15. Yao, Y., et al.: PPAdroid: an approach to android privacy protocol analysis. J. Internet Technol. 23(3), 561–571 (2022)

    Article  Google Scholar 

  16. Yu, L., et al.: Can we trust the privacy policies of Android apps? In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 538–549. IEEE (2016)

    Google Scholar 

  17. Yu, L., et al.: PPChecker: towards accessing the trustworthiness of Android apps’ privacy policies. IEEE Trans. Softw. Eng. 47(2), 221–242 (2018)

    Article  Google Scholar 

  18. Yu, L., et al.: Identifying privacy issues in mobile apps via synthesizing static analysis and NLP (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung H. T. Phan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phan, T.H.T. et al. (2024). Evaluating Third-Party Involvement in Android Apps: Norms and Anomalies in Usage Patterns. In: Younas, M., Awan, I., Petcu, D., Feng, B. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2024. Lecture Notes in Computer Science, vol 14792. Springer, Cham. https://doi.org/10.1007/978-3-031-68005-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68005-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68004-5

  • Online ISBN: 978-3-031-68005-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics